References

  1. B.K. Pramanik, L. Shu, V. Jegatheesan, A review of the management and treatment of brine solutions. Environ. Sci. Water Res. Technol., 3 (2017) 625–658.
  2. A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination brine disposal methods and treatment technologies – a review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j. scitotenv.2019.07.351.
  3. H. Khordagui, Assessment of the Potential Cumulative Environmental Impacts of Desalination Plants Around the Mediterranean Sea, Project Funded by the European Union, Final Report Activity 1.3.2.1, 2017.
  4. PNUE/PAM, Lignes directrices techniques et évaluations connexes Lignes directrices actualisées relatives à la gestion des activités de dessalement, UNEP(DEPI)/MED WG.439/7, Athens, 2017.
  5. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  6. S. Lattemann, Development of an Environmental Impact Assessment and Decision Support System for Seawater Desalination Plants, Doctoral Thesis, DOCTOR, Delft, The Netherlands, 2010.
  7. M. Amitouche, Impacts des rejets des stations de dessalement sur le milieu récepteur, Doctoral Thesis, Biskra University, Algeria, 2016.
  8. A. Niepelt, Development of Interfaces for the Coupling of Hydrodynamic Models for Brine Discharges from Desalination Plants, Diploma Thesis, University of Karlsruhe, Institute for Hydromechanics, 2007.
  9. F.M. Holly, J.L. Grace, Model Studies of Outfall Systems for Desalination Plants (Part I-Flume Study), Research Report N°714, United States Department of the Interior, 1971.
  10. F.M. Holly, J.L. Grace, Model Studies of Outfall Systems for Desalination Plants (Part II-Tests of Effluent Dispersion in Selected Estuary Models), Research Report H-71-2, U.S. Army Waterways Experiment Station, Vicksburg, Mississippi, 1971.
  11. M.A. Zeitoun, W.F. McIlhenny, Model Studies of Outfall Systems for Desalination Plants. Part III. Numerical Simulation and Design Considerations, Research and Development Progress Report N°804, 1972.
  12. S.C. Chaung, V.W. Goldschmidt, Turbulent Diffusion in Liquid Jets: Final Report, U.S. Environmental Protection Agency, Washington, D.C., 1974.
  13. R. Curtet, E.-J. Hopfinger, Calculs et expériences sur les jets neutres et flottants, La Houille Blanche, 60 (1974) 551–573.
  14. N.E. Kotsovinos, E.J. List, Plane turbulent buoyant jets. Part 1. Integral properties, J. Fluid Mech., 81 (1977) 25–44.
  15. N. Kotsovinos, Plane turbulent buoyant jets. Part 2. Turbulence structure, J. Fluid Mech., 81 (1977) 48–62.
  16. M. Downie, The Numerical Analysis of Turbulent Free Jet Flows, Thesis, Sheffield Hallam University Research Archive, United Kingdom, 1978.
  17. D.W. Lee, An Analytical Model for a Vertical Buoyant Jet, Master, OAK Ridge National Laboratory, United States Department of Energy, 1980.
  18. P.N. Papanicolaou, Mass and Momentum Transport in a Turbulent Buoyant Vertical Axisymmetric Jet, Report No. KH-R- 46, Laboratory of Hydraulics and Water Resources, California, 1984.
  19. A.D. Gosman, R. Simitovic, An experimental study of confined jet mixing, Chem. Eng. Sci., 41 (1986) 1853–1871.
  20. M. Wilson, Integral Modelling of Jets of Variable Composition in Generalised Crossflows, Ph.D. Thesis, University of Bath, 1986.
  21. P.J.W. Roberts, Dilution and transport predictions for ocean outfalls, Water Sci. Technol., 21 (1989) 969–979.
  22. R.L. Doneker, CORMIX1: An Expert System for Mixing Zone Analysis of Conventional and Toxic Single Port Aquatic Discharges, Thesis Presented to the Faculty of the Graduate School of Cornell University, 1988.
  23. R.L. Doneker, G.H. Jirka, Expert System for Hydrodynamic Mixing Zone Analysis of Conventional and Toxic Submerged Single Port Discharges (CORMIX1), Technical Report, United States Environmental Protection Agency, EPA, 1989.
  24. P.J. Akar, CORMIX2: An Expert System for Hydrodynamic Mixing Zone Analysis of Conventional and Toxic Multiport Diffuser Discharges, United States Environmental Protection Agency, EPA, 1991.
  25. H.B. Chen, Turbulent Buoyant Jets and Plumes in Flowing Ambient Environments, Ph.D. Thesis, Aalborg: Department of Civil Engineering, Aalborg University, Denmark, 1991.
  26. R.N. Gowda, Field and Laboratory Studies of Mixing Tubes for Marine Outfalls, Thesis, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada, 1992.
  27. G.H. Jirka, R.L. Doneker, S.W. Hinton, User’s Manual for CORMIX: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters, DeFrees Hydraulics Laboratory School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853–3501, 1996.
  28. T. Bleninger, Coupled 3D Hydrodynamic Models for Submarine Outfalls: Environmental Hydraulic Design and Control of Multiport Diffusers, Doctoral Thesis, Institute for Hydromechanics, University Karlsruhe, 2006.
  29. T. Bleninger, G.H. Jirka, Modelling and environmentally sound management of brine discharges from desalination plants, Desalination, 221 (2008) 585–597.
  30. A.S. Al-Ghamdi, Simulation of Jeddah multi-port sea outfall, J. Coastal Conserv., 14 (2010) 63–69.
  31. A. Purnama, H.H. Al-Barwani, T. Bleninger, R.L. Doneker, CORMIX simulations of brine discharges from Barka plants, Oman, Desal. Water Treat., 32 (2011) 329–338.
  32. Á. Loya-Fernández, L.M. Ferrero-Vicente, C. Marco-Méndez, E. Martínez-García, J. Zubcoff, J.L. Sánchez-Lizaso, Comparing four mixing zone models with brine discharge measurements from a reverse osmosis desalination plant in Spain, Desalination, 286 (2012) 217–224.
  33. S. Maalouf, D. Rosso, W.W.-G. Yeha, Optimal planning and design of seawater RO brine outfalls under environmental uncertainty, Desalination, 333 (2014) 134–145.
  34. T.M. Missimer, B. Jones, R.G. Maliva, Eds., Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities: Innovations and Environmental Impacts, Springer International Publishing, Switzerland, 2015.
  35. L. Balas, N. Yilmaz, Numerical modeling of near and far field dilution: Edremit sea outfall, Int. J. Adv. Mech. Civil Eng., 5 (2018) 41–54.
  36. J.A.R. Naranjo, A.G. Trujillo, Analysis of the Performance of Different Brine Diffuser Technologies with CFD Software, The International Desalination Association World Congress on Desalination and Water Reuse 2019/Dubai, UAE, 2019.
  37. SDEM, étude Environnementale de l’usine de dessalement d’eau de mer (SDEM) d’Alger ouest à Fouka, Algérie, Rapport interne, 2006.
  38. M. Amitouche, B. Remini, Operation of Cap Djinet desalination plant and dilution of brine with power station cooling water, Desal. Water Treat., 57 (2016) 3514–3521.
  39. Y. Fernández-Torquemada, J.L. Sánchez-Lizaso, J.M. González-Correa, Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain), Desalination, 182 (2005) 395–402.
  40. J.J. Malfeito, J. Díaz-Caneja, M. Fariñas, Y. Fernández-Torrequemada, J.M. González-Correa,
    A. Carratalá-Giménez, J.L. Sánchez-Lizaso, Brine discharge from the Javea desalination plant, Desalination, 185 (2005) 87–94.
  41. J.L. Sánchez-Lizaso, J. Romero, J. Ruiz, E. Gacia, J.L. Buceta, O. Invers, Y.F. Torquemada, J. Mas, A. Ruiz-Mateo,
    M. Manzanera, Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants, Desalination, 221 (2008) 602–607.
  42. R.L. Doneker, G.H. Jirka, CORMIX USER MANUAL A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters EPA-823-K-07-001 December 2007 (Updated February 2017).