References

  1. K.M. Bataineh, M.A. Abbas, Improving the performance of solar still by using nanofluids, vacuuming, and optimal basin water thickness, Desal. Water Treat., 173 (2020) 105–116.
  2. I.C. Karagiannis, P.G. Soldatos, Water desalination cost literature: review and assessment, Desalination, 223 (2008) 448–456.
  3. A. Jethoo, M. Poonia, Water consumption pattern of Jaipur city (India), Int. J. Environ. Sci. Dev., 2 (2011) 1–4.
  4. W.H. Organization, The World Health Report 2000: Health Systems: Improving Performance, World Health Organization, 2000.
  5. A. Pruss-Ustun, C.F. Corvalán, W.H. Organization, Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease, World Health Organization, 2006.
  6. D. Cutler, G. Miller, The role of public health improvements in health advances: the twentieth-century United States, Demography, 42 (2005) 1–22.
  7. A. Nandi, I. Megiddo, A. Ashok, A. Verma, R. Laxminarayan, Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: a modeling analysis, Soc. Sci. Med., 180 (2017) 181–192.
  8. J.G. Tundisi, Water resources in the future: problems and solutions, estudos avançados, 22 (2008) 7–16.
  9. G. Tiwari, A.K. Tiwari, Solar Distillation Practice for Water Desalination Systems, Anshan Pub., 2008.
  10. P.V. Kumar, A. Kumar, O. Prakash, A.K. Kaviti, Solar stills system design: a review, Renewable Sustainable Energy Rev., 51 (2015) 153–181.
  11. S. Shoeibi, H. Kargarsharifabad, N. Rahbar, Effects of nanoenhanced phase change material and nano-coated on the performance of solar stills, J. Energy Storage, 42 (2021) 103061.
  12. A. Kabeel, M. Abdelgaied, M. Mahgoub, The performance of a modified solar still using hot air injection and PCM, Desalination, 379 (2016) 102–107.
  13. A. Abdullah, Improving the performance of stepped solar still, Desalination, 319 (2013) 60–65.
  14. S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, A review of techniques for simultaneous enhancement of evaporation and condensation rates in solar stills, Sol. Energy, 225 (2021) 666–693.
  15. S. Ladouy, A. Khabbazi, Experimental investigation of different air heating methods near to the evaporation surface in closed triangular shape unit powered by solar energy, one stage – indoor experiment, Appl. Therm. Eng., 127 (2017) 203–211.
  16. A. El-Zahaby, A. Kabeel, A. Bakry, S. El-Agouz, O. Hawam, Augmentation of solar still performance using flash evaporation, Desalination, 257 (2010) 58–65.
  17. W.H. Alawee, S.A. Mohammed, H.A. Dhahad, F.A. Essa, Z. Omara, A. Abdullahd, Performance analysis of a doubleslope solar still with elevated basin—comprehensive study, Desal. Water Treat., 223 (2021) 13–25.
  18. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and
    state-of-the-art, Desalination, 203 (2007) 346–365.
  19. S. Shoeibi, N. Rahbar, A.A. Esfahlani, H. Kargarsharifabad, Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: experimental investigation and numerical simulation, J. Renewable Energy, 171 (2021) 227–244.
  20. R. Balan, J. Chandrasekaran, S. Shanmugan, B. Janarthanan, S. Kumar, Review on passive solar distillation, Desal. Water Treat., 28 (2011) 217–238.
  21. H.B. Bacha, K. Zhani, Contributing to the improvement of the production of solar still, Desal. Water Treat., 51 (2013) 1310–1318.
  22. H.B. Halima, N. Frikha, S.J.D. Gabsi, Experimental study of a bubble basin intended for water desalination system, Desalination, 406 (2017) 10–15.
  23. M. Karim, E. Perez, Z.M. Amin, Mathematical modelling of counter flow v-grove solar air collector, Renewable Energy, 67 (2014) 192–201.
  24. M. El-Awady, H. El-Ghetany, M.A. Latif, Experimental investigation of an integrated solar green house for water desalination, plantation and wastewater treatment in remote arid Egyptian communities, Energy Procedia, 50 (2014) 520–527.
  25. A. Mishra, M. Meraj, G. Tiwari, A. Ahmad, M. Khan, Effect of shape of condensing cover on yield of passive and fully covered PVT active solar still, Desal. Water Treat., 184 (2020) 39–50.
  26. M.A. Eltawil, Z. Omara, Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air, Desalination, 349 (2014) 1–9.
  27. G.M. Ayoub, M. Al-Hindi, L. Malaeb, A solar still desalination system with enhanced productivity, Desal. Water Treat., 53 (2015) 3179–3186.
  28. A.M. Manokar, D.P. Winston, A. Kabeel, S. El-Agouz, R. Sathyamurthy, T. Arunkumar, B. Madhu, A. Ahsan, Integrated PV/T solar still-a mini-review, Desalination, 435 (2018) 259–267.
  29. G. Pandey, Effect of dried and forced air bubbling on the partial pressure of water vapour and the performance of solar still, Sol. Energy, 33 (1984) 13–18.
  30. M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors, Energy, 31 (2006) 452–470.
  31. T. Liu, W. Lin, W. Gao, C. Luo, M. Li, Q. Zheng, C. Xia, A parametric study on the thermal performance of a solar air collector with a V-Groove absorber, Int. J. Green Energy, 4 (2007) 601–622.
  32. W. Lin, W. Gao, T. Liu, A parametric study on the thermal performance of cross-corrugated solar air collectors, Appl. Therm. Eng., 26 (2006) 1043–1053.
  33. M.Y.H. Othman, K. Sopian, B. Yatim, W.R.W. Daud, Development of advanced solar assisted drying systems, Renewable Energy, 31 (2006) 703–709.
  34. P. Azari, A. Mirabdolah Lavasani, N. Rahbar, M. Eftekhari Yazdi, Performance enhancement of a solar still using a V-groove solar air collector—experimental study with energy, exergy, enviroeconomic, and exergoeconomic analysis, Environ. Sci. Pollut. Res., 28 (2021) 65525–65548.
  35. H.S. Aybar, H. Assefi, A review and comparison of solar distillation: direct and indirect type systems, Desal. Water Treat., 10 (2009) 321–331.
  36. G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination, Appl. Energy, 103 (2013) 642–652.
  37. M. Porta-Gándara, J. Fernández-Zayas, N. Chargoy-del-Valle, Solar still distillation enhancement through water surface perturbation, Sol. Energy, 196 (2020) 312–318.
  38. R. Bhardwaj, M. Ten Kortenaar, R. Mudde, Inflatable plastic solar still with passive condenser for single family use, Desalination, 398 (2016) 151–156.
  39. R.A. Kumar, G. Esakkimuthu, K.K. Murugavel, Performance enhancement of a single basin single slope solar still using agitation effect and external condenser, Desalination, 399 (2016) 198–202.
  40. H.-M. Yeh, L.-C. Chen, Basin-type solar distillation with air flow through the still, Energy, 10 (1985) 1237–1241.
  41. N.H.A. Rahim, Utilisation of new technique to improve the efficiency of horizontal solar desalination still, Desalination, 138 (2001) 121–128.
  42. N. Nijegorodov, P.K. Jain, S. Carlsson, Thermal-electrical, high efficiency solar stills, Renewable Energy, 4 (1994) 123–127.
  43. A. Kabeel, Z. Omara, F. Essa, Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach, Energy Convers. Manage., 78 (2014) 493–498.
  44. Y. El-Samadony, A. Abdullah, Z. Omara, Experimental study of stepped solar still integrated with reflectors and external condenser, Exp. Heat Transfer, 28 (2015) 392–404.
  45. H. Hassan, M.S. Yousef, M. Fathy, M.S. Ahmed, Impact of condenser heat transfer on energy and exergy performance of active single slope solar still under hot climate conditions, Sol. Energy, 204 (2020) 79–89.
  46. N. Rahbar, J. Esfahani, Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module, Desalination, 284 (2012) 55–61.
  47. N. Rahbar, J.A. Esfahani, A. Asadi, An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules, Energy Convers. Manage., 118 (2016) 55–62.
  48. N. Rahbar, A. Gharaiian, S. Rashidi, Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules-an experimental investigation, Desalination, 420 (2017) 106–113.
  49. A.Z. Al-Garni, Productivity enhancement of solar still using water heater and cooling fan, J. Sol. Energy Eng., 134 (2012) 031006, doi: 10.1115/1.4005760.
  50. Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped solar still: experimental study, Desalination, 291 (2012) 65–68.
  51. P. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger, Effect of air flow on “V” type solar still with cotton gauze cooling, Desalination, 337 (2014) 1–5.
  52. H. Ali, Mathematical model of the solar still performance using forced convection with condensation process outside the still, Renewable Energy, 1 (1991) 709–712.
  53. H. Ali, Effect of forced convection inside the solar still on heat and mass transfer coefficients, Energy Convers. Manage., 34 (1993) 73–79.
  54. P. Refalo, R. Ghirlando, S. Abela, The use of a solar chimney and condensers to enhance the productivity of a solar still, Desal. Water Treat., 57 (2016) 23024–23037.
  55. G. Mink, M.M. Aboabboud, E. Karmazsin, Air-blown solar still with heat recycling, Sol. Energy, 62 (1998) 309–317.
  56. H. Tanaka, Theoretical analysis of a vertical multiple-effect diffusion solar still coupled with a tilted wick still, Desalination, 377 (2016) 65–72.
  57. H.-M. Yeh, Z.-F. Chen, Energy balances in wick-type doubleeffect solar distillers with air flow through the second-effect unit, Energy, 17 (1992) 1239–1247.
  58. A.K. Kaushal, M. Mittal, D. Gangacharyulu, An experimental study of floating wick basin type vertical multiple effect diffusion solar still with waste heat recovery, Desalination, 414 (2017) 35–45.
  59. C. Ali, K. Rabhi, R. Nciri, F. Nasri, S. Attyaoui, Theoretical and experimental analysis of pin fins absorber solar still, Desal. Water Treat., 56 (2014) 1–7.
  60. N. Smakdji, A. Kaabi, B. Lips, Optimization and modeling of a solar still with heat storage, Desal. Water Treat., 52 (2014) 1761–1769.
  61. T. Arunkumar, K. Raj, D.D.W. Rufuss, D. Denkenberger, G. Tingting, L. Xuan, R. Velraj, A review of efficient high productivity solar stills, Renewable Sustainable Energy Rev., 101 (2019) 197–220.
  62. T. Arunkumar, R. Jayaprakash, A. Ahsan, D. Denkenberger, M. Okundamiya, Effect of water and air flow on concentric tubular solar water desalting system, Appl. Energy, 103 (2013) 109–115.
  63. H.-M. Yeh, Z.-F. Chen, Energy balances for upward-type, double-effect solar distillers with air flow through the secondeffect unit, Energy, 19 (1994) 619–626.
  64. A.E. Kabeel, S.A. El-Agouz, Review of researches and developments on solar stills, Desalination, 276 (2011) 1–12.
  65. M.S.S. Abujazar, S. Fatihah, A.R. Rakmi, M.Z. Shahrom, The effects of design parameters on productivity performance of a solar still for seawater desalination: a review, Desalination, 385 (2016) 178–193.
  66. S. Kumar Nougriaya, M.K. Chopra, B. Gupta, P. Baredar, Stepped solar still: a review on designs analysis, Mater. Today:. Proc., 46 (2021) 5647–5660.
  67. M. Castillo-Téllez, I. Pilatowsky-Figueroa, Á. Sánchez-Juárez, J.L. Fernández-Zayas, Experimental study on the air velocity effect on the efficiency and fresh water production in a forced convective double slope solar still, Appl. Therm. Eng., 75 (2015) 1192–1200.
  68. A.S. Nafey, M. Abdelkader, A. Abdelmotalip, A. Mabrouk, Parameters affecting solar still productivity, Energy Convers. Manage., 41 (2000) 1797–1809.
  69. O. Mahian, A. Kianifar, Mathematical modelling and experimental study of a solar distillation system, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 225 (2011) 1203–1212.
  70. H. Al-Hinai, M. Al-Nassri, B. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 43 (2002) 1639–1650.