References

  1. A. Kabata-Pendias, A.B. Mukherjee, Trace Elements from Soil to Human, Springer, Berlin, Heidelberg, 2007. Available at: https:// doi.org/10.1007/978-3-540-32714-1
  2. M.A. Khan, S. Khan, A. Khan, M. Alam, Soil contamination with cadmium, consequences and remediation using organic amendments, Sci. Total Environ., 601–602 (2017) 1591–1605.
  3. L.-b. Pan, J. Ma, X.-l. Wang, H. Hou, Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution, Chemosphere, 148 (2016) 248–254.
  4. P. Wang, H.P. Chen, P.M. Kopittke, F.-J. Zhao, Cadmium contamination in agricultural soils of China and the impact on food safety, Environ. Pollut., 249 (2019) 1038–1048.
  5. K. Straif, L. Benbrahim-Tallaa, R. Baan, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard, N. Guha, C. Freeman, L. Galichet, V. Cogliano, A review of human carcinogens—Part C: metals, arsenic, dusts, and fibres, Lancet Oncol., 10 (2009) 453–454.
  6. R.A. Bernhoft, Cadmium toxicity and treatment, The Sci. World J., 2013 (2013) 1–7, doi:10.1155/2013/394652.
  7. T. Ogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, T. Kido, K. Nogawa, Relationship among prevalence of patients with Itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyama prefecture of Japan, Int. J. Environ. Health Res., 14 (2004) 243–252.
  8. European Commission (EC), Regulation (EC) No 1272/2008 of the European Parliament and of the Council, of 16 December 2008, on Classification, Labelling and Packaging of Substances and Mixtures, EUR-Lex., 1 (2018) 1389. Available at: https://eurlex. europa.eu
  9. E. Union, Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, Off. J. Eur. Union., 2008, pp. 84–97.
  10. G. Nordberg, B. Fowler, M. Nordberg, Handbook on the Toxicology of Metals, Academic Press, Cambridge, Massachusetts, 2015. Available at: https://doi.org/10.1016/C2011-0-07884-5
  11. J. Yang, Potential application of membrane capacitive deionization for heavy metal removal from water: a minireview, Int. J. Electrochem. Sci., 15 (2020) 7848–7859.
  12. Y.K. Leong, J.-S. Chang, Bioremediation of heavy metals using microalgae: recent advances and mechanisms, Bioresour. Technol., 303 (2020) 122886, doi: 10.1016/j.biortech.2020.122886.
  13. C. Fang, V. Achal, The potential of microbial fuel cells for remediation of heavy metals from soil and water—review of application, Microorganisms, 7 (2019) 697, doi: 10.3390/ microorganisms7120697.
  14. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
  15. M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah, B. Salamatinia, Z. Gholami, Oil palm biomass as an adsorbent for heavy metals, Rev. Environ. Contam. Toxicol., 232 (2014) 61–88.
  16. M.A. Naeem, M. Imran, M. Amjad, G. Abbas, M. Tahir, B. Murtaza, A. Zakir, M. Shahid, L. Bulgariu, I. Ahmad, Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar, Water, 11 (2019) 1438, doi: 10.3390/w11071438.
  17. D. Bulgariu, L. Bulgariu, Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies, J. Cleaner Prod., 112 (2016) 4525–4533.
  18. C.S. Lwin, B.H. Seo, H.U. Kim, G. Owens, K.R. Kim, Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—a critical review, Soil Sci. Plant Nutr., 64 (2018) 156–167.
  19. M. Tańczuk, R. Junga, A. Kolasa-Więcek, P. Niemiec, Assessment of the energy potential of chicken manure in Poland, Energies, 12 (2019) 1244, doi: 10.3390/en12071244.
  20. D. Dróżdż, K. Wystalska, K. Malińska, A. Grosser, A. Grobelak, M. Kacprzak, Management of poultry manure in Poland – current state and future perspectives, J. Environ. Manage., 264 (2020) 110327, doi:10.1016/j.jenvman.2020.110327.
  21. I. Michalak, K. Chojnacka, A. Witek-Krowiak, State of the art for the biosorption process – a review, Appl. Biochem. Biotechnol., 170 (2013) 1389–1416.
  22. M. Kyakuwaire, G. Olupot, A. Amoding, P. Nkedi-Kizza, T.A. Basamba, How safe is chicken litter for land application as an organic fertilizer? a review, Int. J. Environ. Res. Public Health, 16 (2019) 3521, doi:10.3390/ijerph16193521.
  23. Z. He, P.H. Pagliari, H.M. Waldrip, Applied and environmental chemistry of animal manure: a review, Pedosphere, 26 (2016) 779–816.
  24. W. Zhou, L. Ren, L. Zhu, Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure, Environ. Pollut., 223 (2017) 247–254.
  25. F. Debela, J.M. Arocena, R.W. Thring, T. Whitcombe, Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil, J. Environ. Manage., 116 (2013) 156–162.
  26. M. Sabir, M. Zia-ur-Rehman, K.R. Hakeem, Saifullah, Phytoremediation of metal contaminated soils using organic amendments: prospectus and challenges, K.R. Hakeem, M. Sabir, M. Ozturk, A. Murmut, Eds., Soil Remediation and Plants, Academic Press, Cambridge, Massachusetts, 2015, pp. 503–523. Available at: https://doi.org/10.1016/B978-0-12-799937-1.00017-6
  27. P. Kucharski, B. Białecka, A. Śliwińska, A. Pieprzyca, Evaluation of specific capacity of poultry litter in heavy metal sorption, Water Air Soil Pollut., 232 (2021) 35, doi: 10.1007/ s11270-021-04984-w.
  28. J.B. López-Sotelo, M.J. Quina, L. Gando-Ferreira, M. Sánchez-Báscones, L.M. Navas-Gracia, Compost from poultry hatchery waste as a biosorbent for removal of Cd(II) and Pb(II) from aqueous solutions, Can. J. Chem. Eng., 95 (2017) 839–848.
  29. X.S. He, B.D. Xi, Y.H. Jiang, M.X. Li, H. Bin Yu, D. An, Y. Yang, H.L. Liu, Elemental and spectroscopic methods with chemometric analysis for characterizing composition and transformation of dissolved organic matter during chicken manure composting, Environ. Technol. (United Kingdom), 33 (2012) 2033–2039.
  30. A. Wieckol-Ryk, B. Białecka, M. Thomas, Application of calcium peroxide as an environmentally friendly oxidant to reduce pathogens in organic fertilizers and its impact on phosphorus bioavailability, Arch. Environ. Prot., 46 (2020) 42–53.
  31. M. Uchimiya, I.M. Lima, K. Thomas Klasson, S. Chang, L.H. Wartelle, J.E. Rodgers, Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil, J. Agric. Food Chem., 58 (2010) 5538–5544.
  32. J.H. Park, G.K. Choppala, N.S. Bolan, J.W. Chung, T. Chuasavathi, Biochar reduces the bioavailability and phytotoxicity of heavy metals, Plant Soil., 348 (2011) 439–451.
  33. M. Benkova, I. Atanassova, Effectiveness of Lime and Glauconite- Phosphorite Containing Organo-Mineral Ameliorants in Heavy-Metal-Contaminated Soils, H.M. Selim, Ed., Phosphate in Soils. Interaction with Micronutrients, Radionuclides and Heavy Metals, 1st ed., CRC Press, Boca Raton, Florida, 2018, pp. 293–320. Available at: https://doi.org/10.1201/9781351228909
  34. M. Hamidpour, M. Kalbasi, M. Afyuni, H. Shariatmadari, G. Furrer, Sorption of lead on Iranian bentonite and zeolite: kinetics and isotherms, Environ. Earth Sci., 62 (2011) 559–568.
  35. Y. Hamid, L. Tang, B. Hussain, M. Usman, L. Liu, A. Sher, X. Yang, Adsorption of Cd and Pb in contaminated gleysol by composite treatment of sepiolite, organic manure and lime in field and batch experiments, Ecotoxicol. Environ. Saf., 196 (2020) 110539, doi: 10.1016/j.ecoenv.2020.110539.
  36. Y. Hamid, L. Tang, B. Hussain, M. Usman, M.L. ur Rehman Hashmi, M. Bilal Khan, X. Yang, Z. He, Immobilization and sorption of Cd and Pb in contaminated stagnic anthrosols as amended with biochar and manure combined with inorganic additives, J. Environ. Manage., 257 (2020) 109999,
    doi: 10.1016/j. jenvman.2019.109999.
  37. C. Badenhorst, C. Santos, J. Lázaro-Martínez, B. Białecka, M. Cruceru, A. Guedes, R. Guimarães, K. Moreira,
    G. Predeanu, I. Suárez-Ruíz, I. Cameán, B. Valentim, N. Wagner, Assessment of graphitized coal ash char concentrates as a potential synthetic graphite source, Minerals, 10 (2020) 986, doi: 10.3390/ min10110986.
  38. L. Bartoňová, Unburned carbon from coal combustion ash: an overview, Fuel Process. Technol., 134 (2015) 136–158.
  39. K. Wierzchowski, B. Białecka, J. Calus Moszko, A. Klupa, Characterization of unburned carbon separated from power plant slag, Int. J. Environ. Sci. Technol., 17 (2020) 2499–2510.
  40. D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering Statistics, 5th ed., John Wiley & Sons, New York, 2011.
  41. P. Kowalczyk, B. Ligas, D. Skrzypczak, K. Mikula, G. Izydorczyk, A. Witek-Krowiak, K. Moustakas, K. Chojnacka, Biosorption as a method of biowaste valorization to feed additives: RSM optimization, Environ. Pollut., 268 (2021) 115937, doi: 10.1016/j. envpol.2020.115937.
  42. D. Naghipour, K. Taghavi, J. Jaafari, Y. Mahdavi, M. Ghanbari Ghozikali, R. Ameri, A. Jamshidi, A.H. Mahvi, Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM), Desal. Water Treat., 57 (2016) 19431–19442.
  43. M. Isam, L. Baloo, S.R.M. Kutty, S. Yavari, Optimisation and modelling of Pb(II) and Cu(II) biosorption onto red algae (Gracilaria changii) by using response surface methodology, Water (Switzerland), 11 (2019), doi:10.3390/w11112325.
  44. S. Biswas, M. Bal, S. Behera, T. Sen, B. Meikap, Process optimization study of Zn2+ adsorption
    on biochar-alginate composite adsorbent by response surface methodology (RSM), Water, 11 (2019) 325, doi: 10.3390/w11020325.
  45. N.K. Sharma, M. Choct, S.B. Wu, R. Smillie, N. Morgan, A.S. Omar, N. Sharma, R.A. Swick, Performance, litter quality and gaseous odour emissions of broilers fed phytase supplemented diets, Anim. Nutr., 2 (2016) 288–295.
  46. A. Abdulrahman Oyekanmi, A.A. Abd Latiff, Z. Daud, R.M. Saphira Radin Mohamed, N. Ismail, A. Ab Aziz,
    M. Rafatullah, K. Hossain, A. Ahmad, A. Kamoldeen Abiodun, Adsorption of cadmium and lead from palm oil mill effluent using bone-composite: optimisation and isotherm studies, Int. J. Environ. Anal. Chem., 99 (2019) 707–725.
  47. S.L.R. Ellison, A. Williams, Eds., Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed., Eurachem, 2012. Available at: http://www.eurchem.org/
  48. V. Jayakumar, S. Govindaradjane, P. Senthil Kumar, N. Rajamohan, M. Rajasimman, Sustainable removal of cadmium from contaminated water using green alga – optimization, characterization and modeling studies, Environ. Res., 199 (2021) 111364, doi: 10.1016/j.envres.2021.111364.
  49. G. Tan, H. Yuan, Y. Liu, D. Xiao, Removal of cadmium from aqueous solution using wheat stem, corncob, and rice husk, Sep. Sci. Technol., 46 (2011) 2049–2055.
  50. Y. Ding, D. Jing, H. Gong, L. Zhou, X. Yang, Biosorption of aquatic cadmium(II) by unmodified rice straw, Bioresour. Technol., 114 (2012) 20–25.
  51. E. Szewczak, A. Bondarzewski, Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?, Accredit. Qual. Assur., 21 (2016) 91–100.
  52. F. Ma, B. Zhao, J. Diao, Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution, Water Sci. Technol., 74 (2016) 1335–1345.
  53. E. Aranda-García, G.M. Chávez-Camarillo, E. Cristiani-Urbina, Effect of ionic strength and coexisting ions on the biosorption of divalent nickel by the acorn shell of the oak Quercus crassipes Humb. & Bonpl., Processes, 8 (2020) 1229, doi: 10.3390/ pr8101229.