References
- A. Kabata-Pendias, A.B. Mukherjee, Trace Elements from Soil to
Human, Springer, Berlin, Heidelberg, 2007. Available at: https://
doi.org/10.1007/978-3-540-32714-1
- M.A. Khan, S. Khan, A. Khan, M. Alam, Soil contamination
with cadmium, consequences and remediation using organic
amendments, Sci. Total Environ., 601–602 (2017) 1591–1605.
- L.-b. Pan, J. Ma, X.-l. Wang, H. Hou, Heavy metals in soils from
a typical county in Shanxi Province, China: levels, sources and
spatial distribution, Chemosphere, 148 (2016) 248–254.
- P. Wang, H.P. Chen, P.M. Kopittke, F.-J. Zhao, Cadmium
contamination in agricultural soils of China and the impact on
food safety, Environ. Pollut., 249 (2019) 1038–1048.
- K. Straif, L. Benbrahim-Tallaa, R. Baan, Y. Grosse, B. Secretan,
F. El Ghissassi, V. Bouvard, N. Guha, C. Freeman, L. Galichet,
V. Cogliano, A review of human carcinogens—Part C: metals,
arsenic, dusts, and fibres, Lancet Oncol., 10 (2009) 453–454.
- R.A. Bernhoft, Cadmium toxicity and treatment, The Sci. World
J., 2013 (2013) 1–7, doi:10.1155/2013/394652.
- T. Ogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, T. Kido,
K. Nogawa, Relationship among prevalence of patients with
Itai-itai disease, prevalence of abnormal urinary findings, and
cadmium concentrations in rice of individual hamlets in the
Jinzu River basin, Toyama prefecture of Japan, Int. J. Environ.
Health Res., 14 (2004) 243–252.
- European Commission (EC), Regulation (EC) No 1272/2008 of
the European Parliament and of the Council, of 16 December
2008, on Classification, Labelling and Packaging of Substances
and Mixtures, EUR-Lex., 1 (2018) 1389. Available at: https://eurlex.
europa.eu
- E. Union, Directive 2008/105/EC of the European Parliament
and of the Council of 16 December 2008 on Environmental
Quality Standards in the Field of Water Policy, Amending
and Subsequently Repealing Council Directives 82/176/EEC,
83/513/EEC, 84/156/EEC, 84/491/EEC, Off. J. Eur. Union., 2008,
pp. 84–97.
- G. Nordberg, B. Fowler, M. Nordberg, Handbook on the
Toxicology of Metals, Academic Press, Cambridge, Massachusetts,
2015. Available at: https://doi.org/10.1016/C2011-0-07884-5
- J. Yang, Potential application of membrane capacitive
deionization for heavy metal removal from water: a minireview,
Int. J. Electrochem. Sci., 15 (2020) 7848–7859.
- Y.K. Leong, J.-S. Chang, Bioremediation of heavy metals using
microalgae: recent advances and mechanisms, Bioresour.
Technol., 303 (2020) 122886, doi: 10.1016/j.biortech.2020.122886.
- C. Fang, V. Achal, The potential of microbial fuel cells for
remediation of heavy metals from soil and water—review
of application, Microorganisms, 7 (2019) 697, doi: 10.3390/
microorganisms7120697.
- S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics
and adsorption capacities of low-cost sorbents for wastewater
treatment: a review, Sustainable Mater. Technol., 9 (2016) 10–40.
- M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah,
B. Salamatinia, Z. Gholami, Oil palm biomass as an adsorbent
for heavy metals, Rev. Environ. Contam. Toxicol., 232 (2014)
61–88.
- M.A. Naeem, M. Imran, M. Amjad, G. Abbas, M. Tahir,
B. Murtaza, A. Zakir, M. Shahid, L. Bulgariu, I. Ahmad, Batch
and column scale removal of cadmium from water using raw
and acid activated wheat straw biochar, Water, 11 (2019) 1438,
doi: 10.3390/w11071438.
- D. Bulgariu, L. Bulgariu, Potential use of alkaline treated algae
waste biomass as sustainable biosorbent for clean recovery of
cadmium(II) from aqueous media: batch and column studies,
J. Cleaner Prod., 112 (2016) 4525–4533.
- C.S. Lwin, B.H. Seo, H.U. Kim, G. Owens, K.R. Kim, Application
of soil amendments to contaminated soils for heavy metal
immobilization and improved soil quality—a critical review,
Soil Sci. Plant Nutr., 64 (2018) 156–167.
- M. Tańczuk, R. Junga, A. Kolasa-Więcek, P. Niemiec, Assessment
of the energy potential of chicken manure in Poland, Energies,
12 (2019) 1244, doi: 10.3390/en12071244.
- D. Dróżdż, K. Wystalska, K. Malińska, A. Grosser, A. Grobelak,
M. Kacprzak, Management of poultry manure in Poland –
current state and future perspectives, J. Environ. Manage.,
264 (2020) 110327, doi:10.1016/j.jenvman.2020.110327.
- I. Michalak, K. Chojnacka, A. Witek-Krowiak, State of the art for
the biosorption process – a review, Appl. Biochem. Biotechnol.,
170 (2013) 1389–1416.
- M. Kyakuwaire, G. Olupot, A. Amoding, P. Nkedi-Kizza,
T.A. Basamba, How safe is chicken litter for land application
as an organic fertilizer? a review, Int. J. Environ. Res. Public
Health, 16 (2019) 3521, doi:10.3390/ijerph16193521.
- Z. He, P.H. Pagliari, H.M. Waldrip, Applied and environmental
chemistry of animal manure: a review, Pedosphere, 26 (2016)
779–816.
- W. Zhou, L. Ren, L. Zhu, Reducement of cadmium adsorption
on clay minerals by the presence of dissolved organic matter
from animal manure, Environ. Pollut., 223 (2017) 247–254.
- F. Debela, J.M. Arocena, R.W. Thring, T. Whitcombe, Organic
acids inhibit the formation of pyromorphite and Zn-phosphate
in phosphorous amended Pb- and Zn-contaminated soil,
J. Environ. Manage., 116 (2013) 156–162.
- M. Sabir, M. Zia-ur-Rehman, K.R. Hakeem, Saifullah,
Phytoremediation of metal contaminated soils using organic
amendments: prospectus and challenges, K.R. Hakeem, M. Sabir,
M. Ozturk, A. Murmut, Eds., Soil Remediation and Plants,
Academic Press, Cambridge, Massachusetts, 2015, pp. 503–523.
Available at: https://doi.org/10.1016/B978-0-12-799937-1.00017-6
- P. Kucharski, B. Białecka, A. Śliwińska, A. Pieprzyca,
Evaluation of specific capacity of poultry litter in heavy metal
sorption, Water Air Soil Pollut., 232 (2021) 35, doi: 10.1007/
s11270-021-04984-w.
- J.B. López-Sotelo, M.J. Quina, L. Gando-Ferreira, M. Sánchez-Báscones, L.M. Navas-Gracia, Compost from poultry hatchery
waste as a biosorbent for removal of Cd(II) and Pb(II) from
aqueous solutions, Can. J. Chem. Eng., 95 (2017) 839–848.
- X.S. He, B.D. Xi, Y.H. Jiang, M.X. Li, H. Bin Yu, D. An,
Y. Yang, H.L. Liu, Elemental and spectroscopic methods with
chemometric analysis for characterizing composition and
transformation of dissolved organic matter during chicken
manure composting, Environ. Technol. (United Kingdom),
33 (2012) 2033–2039.
- A. Wieckol-Ryk, B. Białecka, M. Thomas, Application of calcium
peroxide as an environmentally friendly oxidant to reduce
pathogens in organic fertilizers and its impact on phosphorus
bioavailability, Arch. Environ. Prot., 46 (2020) 42–53.
- M. Uchimiya, I.M. Lima, K. Thomas Klasson, S. Chang,
L.H. Wartelle, J.E. Rodgers, Immobilization of heavy metal
ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars
in water and soil, J. Agric. Food Chem., 58 (2010) 5538–5544.
- J.H. Park, G.K. Choppala, N.S. Bolan, J.W. Chung, T. Chuasavathi,
Biochar reduces the bioavailability and phytotoxicity of heavy
metals, Plant Soil., 348 (2011) 439–451.
- M. Benkova, I. Atanassova, Effectiveness of Lime and Glauconite-
Phosphorite Containing Organo-Mineral Ameliorants in
Heavy-Metal-Contaminated Soils, H.M. Selim, Ed., Phosphate
in Soils. Interaction with Micronutrients, Radionuclides and
Heavy Metals, 1st ed., CRC Press, Boca Raton, Florida, 2018,
pp. 293–320. Available at: https://doi.org/10.1201/9781351228909
- M. Hamidpour, M. Kalbasi, M. Afyuni, H. Shariatmadari,
G. Furrer, Sorption of lead on Iranian bentonite and zeolite:
kinetics and isotherms, Environ. Earth Sci., 62 (2011) 559–568.
- Y. Hamid, L. Tang, B. Hussain, M. Usman, L. Liu, A. Sher,
X. Yang, Adsorption of Cd and Pb in contaminated gleysol
by composite treatment of sepiolite, organic manure and
lime in field and batch experiments, Ecotoxicol. Environ. Saf.,
196 (2020) 110539, doi: 10.1016/j.ecoenv.2020.110539.
- Y. Hamid, L. Tang, B. Hussain, M. Usman, M.L. ur Rehman
Hashmi, M. Bilal Khan, X. Yang, Z. He, Immobilization and
sorption of Cd and Pb in contaminated stagnic anthrosols as
amended with biochar and manure combined with inorganic
additives, J. Environ. Manage., 257 (2020) 109999,
doi: 10.1016/j.
jenvman.2019.109999.
- C. Badenhorst, C. Santos, J. Lázaro-Martínez, B. Białecka,
M. Cruceru, A. Guedes, R. Guimarães, K. Moreira,
G. Predeanu,
I. Suárez-Ruíz, I. Cameán, B. Valentim, N. Wagner, Assessment
of graphitized coal ash char concentrates as a potential
synthetic graphite source, Minerals, 10 (2020) 986, doi: 10.3390/
min10110986.
- L. Bartoňová, Unburned carbon from coal combustion ash: an
overview, Fuel Process. Technol., 134 (2015) 136–158.
- K. Wierzchowski, B. Białecka, J. Calus Moszko, A. Klupa,
Characterization of unburned carbon separated from power
plant slag, Int. J. Environ. Sci. Technol., 17 (2020) 2499–2510.
- D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering
Statistics, 5th ed., John Wiley & Sons, New York, 2011.
- P. Kowalczyk, B. Ligas, D. Skrzypczak, K. Mikula, G. Izydorczyk,
A. Witek-Krowiak, K. Moustakas, K. Chojnacka, Biosorption
as a method of biowaste valorization to feed additives: RSM
optimization, Environ. Pollut., 268 (2021) 115937, doi: 10.1016/j.
envpol.2020.115937.
- D. Naghipour, K. Taghavi, J. Jaafari, Y. Mahdavi, M. Ghanbari
Ghozikali, R. Ameri, A. Jamshidi, A.H. Mahvi, Statistical
modeling and optimization of the phosphorus biosorption by
modified Lemna minor from aqueous solution using response
surface methodology (RSM), Desal. Water Treat., 57 (2016)
19431–19442.
- M. Isam, L. Baloo, S.R.M. Kutty, S. Yavari, Optimisation and
modelling of Pb(II) and Cu(II) biosorption onto red algae
(Gracilaria changii) by using response surface methodology,
Water (Switzerland), 11 (2019), doi:10.3390/w11112325.
- S. Biswas, M. Bal, S. Behera, T. Sen, B. Meikap, Process
optimization study of Zn2+ adsorption
on biochar-alginate
composite adsorbent by response surface methodology (RSM),
Water, 11 (2019) 325, doi: 10.3390/w11020325.
- N.K. Sharma, M. Choct, S.B. Wu, R. Smillie, N. Morgan,
A.S. Omar, N. Sharma, R.A. Swick, Performance, litter
quality and gaseous odour emissions of broilers fed phytase
supplemented diets, Anim. Nutr., 2 (2016) 288–295.
- A. Abdulrahman Oyekanmi, A.A. Abd Latiff, Z. Daud,
R.M. Saphira Radin Mohamed, N. Ismail, A. Ab Aziz,
M. Rafatullah, K. Hossain, A. Ahmad, A. Kamoldeen Abiodun,
Adsorption of cadmium and lead from palm oil mill effluent
using bone-composite: optimisation and isotherm studies,
Int. J. Environ. Anal. Chem., 99 (2019) 707–725.
- S.L.R. Ellison, A. Williams, Eds., Eurachem/CITAC Guide:
Quantifying Uncertainty in Analytical Measurement, 3rd ed.,
Eurachem, 2012. Available at: http://www.eurchem.org/
- V. Jayakumar, S. Govindaradjane, P. Senthil Kumar,
N. Rajamohan, M. Rajasimman, Sustainable removal of
cadmium from contaminated water using green alga – optimization,
characterization and modeling studies, Environ. Res.,
199 (2021) 111364, doi: 10.1016/j.envres.2021.111364.
- G. Tan, H. Yuan, Y. Liu, D. Xiao, Removal of cadmium from
aqueous solution using wheat stem, corncob, and rice husk,
Sep. Sci. Technol., 46 (2011) 2049–2055.
- Y. Ding, D. Jing, H. Gong, L. Zhou, X. Yang, Biosorption of
aquatic cadmium(II) by unmodified rice straw, Bioresour.
Technol., 114 (2012) 20–25.
- E. Szewczak, A. Bondarzewski, Is the assessment of
interlaboratory comparison results for a small number of tests
and limited number of participants reliable and rational?,
Accredit. Qual. Assur., 21 (2016) 91–100.
- F. Ma, B. Zhao, J. Diao, Adsorption of cadmium by biochar
produced from pyrolysis of corn stalk in aqueous solution,
Water Sci. Technol., 74 (2016) 1335–1345.
- E. Aranda-García, G.M. Chávez-Camarillo, E. Cristiani-Urbina,
Effect of ionic strength and coexisting ions on the biosorption
of divalent nickel by the acorn shell of the oak Quercus crassipes
Humb. & Bonpl., Processes, 8 (2020) 1229, doi: 10.3390/
pr8101229.