References
- A.J. van der Ven, T.B. Vree, E.W. van Ewijk-Beneken Kolmer,
P.P. Koopmans, J.W. van der Meer, Urinary recovery and
kinetics of sulphamethoxazole and its metabolites in HIV seropositive
patients and healthy volunteers after a single oral
dose of sulphamethoxazole, Br. J. Clin. Pharmacol., 39 (1995)
621–625.
- N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of
antibiotics during municipal water recycling treatment
processes, Water Res., 44 (2010) 4295–4323.
- F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, M.A. Otura, Effect
of the anode materials on the efficiency of the electro-Fenton
process for the mineralization of the antibiotic sulfamethazine,
Appl. Catal., B, 199 (2016) 331–341.
- B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The
occurrence of pharmaceuticals, personal care products,
endocrine disruptors and illicit drugs in surface water in South
Wales, UK, Water Res., 42 (2008) 3498–3518.
- S. Willach, H.V. Lutze, K. Eckey, K. Löppenberg, M. Lüling,
J.-B. Wolbert, D.M. Kujawinski, M.A. Jochmann,
U. Karst,
T.C. Schmidt, Direct photolysis of sulfamethoxazole using
various irradiation sources and wavelength ranges—insights
from degradation product analysis and compound-specific
stable isotope analysis, Environ. Sci. Technol., 52 (2018)
1225–1233.
- X. Min, W. Li, Z. Wei, R. Spinney, D.D. Dionysiou, Y. Seo,
C.J. Tang, Q. Li, R. Xiao, Sorption and biodegradation of
pharmaceuticals in aerobic activated sludge system: a combined
experimental and theoretical mechanistic study, Chem. Eng. J.,
342 (2018) 211–219.
- F. Bonvin, J. Omlin, R. Rutler, W.B. Schweizer, P.J. Alaimo,
T.J. Strathmann, K. McNeill, T. Kohn, Direct photolysis of
human metabolites of the antibiotic sulfamethoxazole: evidence
for abiotic back-transformation, Environ. Sci. Technol., 47 (2013)
6746−6755.
- C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate
of antibiotic resistant bacteria in wastewater treatment plants:
a review, Ecotoxicol. Environ. Saf., 91 (2013) 1–9.
- K. Noguera-Oviedo, D.S. Aga, Lessons learned from more
than two decades of research on emerging contaminants in the
environment, J. Hazard. Mater., 316 (2016) 242–251.
- P. Yan, Q. Sui, S. Lyu, H. Hao, H.F. Schröder, W. Gebhardt,
Elucidation of the oxidation mechanisms and pathways
of sulfamethoxazole degradation under Fe(II) activated
percarbonate treatment, Sci. Total Environ., 640–641 (2018)
973–980.
- L. Gao, D. Minakata, Z. Wei, R. Spinney, D.D. Dionysiou,
C.J. Tang, L. Chai, R. Xiao, Mechanistic study on the role
of soluble microbial products in sulfate radical-mediated
degradation of pharmaceuticals, Environ. Sci. Technol.,
53 (2019) 342–353.
- A. Göbel, A. Thomsen, C.S. McArdell, A. Joss, W. Giger,
Occurrence and sorption behavior of sulfonamides, macrolides,
and trimethoprim in activated sludge treatment, Environ. Sci.
Technol., 39 (2005) 3981−3989.
- M. Radke, C. Lauwigi, G. Heinkele, T.E. Mürdter, M. Letzel,
Fate of the antibiotic sulfamethoxazole and its two major human
metabolites in a water sediment test, Environ. Sci. Technol.,
43 (2009) 3135−3141.
- K.L. Carstens, A.D. Gross, T.B. Moorman, J.R. Coats, Sorption
and photodegradation processes govern distribution and fate of
sulfamethazine in freshwater-sediment microcosms, Environ.
Sci. Technol., 47 (2013) 10877–10883.
- J. Gou, Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng, X. Li,
M. Xie, Q. Cheng, Fabrication of Ag2O/TiO2-zeolite composite
and its enhanced solar light photocatalytic performance and
mechanism for degradation of norfloxacin, Chem. Eng. J.,
308 (2017) 818–826.
- J. Song, X. Wang, J. Ma, X. Wang, J. Wang, J. Zhao, Visible-light
driven in situ inactivation of Microcystis aeruginosa with the use
of floating g-C3N4 heterojunction photocatalyst: performance,
mechanisms and implications, Appl. Catal., B, 226 (2018) 83–92.
- M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogendoped
TiO2 photocatalysts and study on their photocatalytic
activities in visible light, Appl. Catal., B, 89 (2009) 563–569.
- A. Hernández-Ramírez, I. Medina-Ramírez, Photocatalytic
Semiconductors: Synthesis, Characterization and
Environmental Applications, Springer, New York, 2015.
- S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics
in photocatalysis: intersection of materials synthesis,
characterization techniques and theoretical simulations, Chem.
Soc. Rev., 44 (2015) 2893–2939.
- J.R. Melo, A.F. Gualdrón-Reyes, N.R.C. Fernandes,
M.L. Gimenes, M.I. Carreño-Lizcano, I.N. Sequeda-Pico,
J. Rodríguez-Pereira, V. Baldovino-Medrano, M.E. Niño-Gómez, How does the Zn-precursor nature impact carrier
transfer in ZnO/Zn-TiO2 nanostructures? Organic vs. inorganic
anions, New J. Chem., 43 (2019) 19085–19096.
- M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide
nanomaterials, Chem. Rev., 114 (2014) 9853–9889.
- S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, P.S. Devi,
Solution grown ZnO rods: synthesis, characterization and
defect mediated photocatalytic activity, Appl. Catal., B,
165 (2015) 128–138.
- K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of
zinc oxide based photocatalyst in water treatment technology:
a review, Water Res., 88 (2016) 428–448.
- F.X. Xiao, S.F. Hung, H.B. Tao, J. Miao, H.B. Yang, B. Liu,
Spatially branched hierarchical ZnO nanorod-TiO2 nanotube
array heterostructures for versatile photocatalytic and
photoelectrocatalytic applications: towards intimate integration
of 1D–1D hybrid nanostructures, Nanoscale, 24 (2014)
14950–14961.
- M. Kwiatkowski, I. Bezverkhyya, M. Skompska, ZnO nanorods
covered with a TiO2 layer: simple sol–gel preparation, and
optical, photocatalytic and photoelectrochemical properties,
Mater. Chem. A, 3 (2015) 12748–12760.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, Wan M.A. Daud,
Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO
photocatalyst under visible light irradiation, J. Mol. Liq.,
258 (2018) 354–365.
- S. Mukhopadhyay, D. Maiti, S. Chatterjee, P.S. Devi, G.S. Kumar,
Design and application of Au decorated ZnO/TiO2 as a stable
photocatalyst for wide spectral coverage, Phys. Chem. Chem.
Phys., 18 (2016) 31622—31633.
- M. Tobajas, C. Belver, J.J. Rodriguez, Degradation of emerging
pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures, Chem. Eng. J., 309 (2017) 596–606.
- L.V. Cardoso, D. Tomasini, M.R.F. Sampaio, S.S. Caldas,
N. Kleemann, E.G. Primel, F.F. Gonçalves, Optimization and
validation of a method using SPE and LC-APCI-MS/MS for
determination of pharmaceuticals in surface and public supply
water, J. Braz. Chem. Soc., 22 (2011) 1944–1952.
- K. Lehnberg L. Kovalova, C. Kazner, T. Wintgens, T. Schettgen,
T. Melin, J. Hollender, W. Dott., Degradation of Selected
Organic Micropollutants from WWTP Effluent with Powdered
Activated Carbon and Retention by Nanofiltration, Y.J. Kim,
U. Platt, M.B. Gu, H. Iwahashi, Eds., Atmospheric and Biological
Environmental Monitoring, Springer, Dordrecht, Heidelberg,
New York, London, 2009, pp. 161–178.
- S.O. García, G.P. Pinto, P.A. García-Encina, R.I. Mata, Ranking
of concern, based on environmental indexes, for pharmaceutical
and personal care products: an application to the Spanish case,
J. Environ. Manage., 129 (2013) 389–397.
- R. Wahab, I.H. Hwang, Y.S. Kim, H.S. Shin, Photocatalytic
activity of zinc oxide micro-flowers synthesized via solution
method, Chem. Eng. J., 168 (2011) 359–366.
- M. Gusatti, D.A.R. Souza, N.C. Kuhnen, H.G. Riella, Growth of
variable aspect ratio ZnO nanorods by solochemical processing,
J. Mater. Sci. Technol., 31 (2015) 10–15.
- M.S.M. Ghazali, A. Zakaria, Z. Rizwan, H.M. Kamari,
M. Hashim, M.H.M Zaid, R. Zamiri, Use of a reflectance
spectroscopy accessory for optical characterization of ZnO-BiO2O3-TiO2 ceramics, Int. J. Mol. Sci., 12 (2011) 1496–1504.
- N. Ghobadi, Band gap determination using absorption
spectrum fitting procedure, Int. Nano Lett., 3 (2013) 2–4.
- M. Meinert, G. Reiss, Electronic structure and optical band gap
determination of NiFe2O4, J. Phys.: Condens. Matter, 26 (2014)
1–4.
- S. Jorfi, G. Barzegar, M. Ahmadi, R.D.C. Soltanid,
N.J. Haghighifard, A. Takdastan, R. Saeedi, M. Abtahi, Enhanced
coagulation-photocatalytic treatment of Acid red 73
dye and real textile wastewater using UVA/synthesized MgO
nanoparticles, J. Environ. Manage., 177 (2016) 111–118.
- J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures
of merit for the technical development and application of
advanced oxidation processes, J. Adv. Oxid. Technol., 1 (1996)
13–17.
- J.C. Garcia, T.K.F.S. Freitas, S.M. Palácio, E. Ambrósio,
M.T.F. Souza, Toxicity assessment of textile effluents treated by
advanced oxidative process (UV/TiO2 and UV/TiO2/H2O2) in
the species Artemia salina L., Environ. Monit. Assess., 185 (2013)
2179–2187.
- M.C. Ortega, M.T. Moreno, J. Ordovás, M.T. Aguado, Behaviour
of different horticultural species in phytotoxicity bioassays of
bark substrates, Sci. Hortic., 66 (1996) 125–132.
- United States Environmental Protection Agency (USEPA),
Ecological Effects Test Guidelines OPPTS 850.4200 – Seed
germination/Root Elongation Toxicity Test. P.a. T. S. Prevention,
Washington D.C., 1996.
- T. Giannakopouloua, N. Todorova, M. Giannouri, J. Yu,
C. Trapalis, Optical and photocatalytic properties of composite
TiO2/ZnO thin films, Catal. Today, 230 (2014) 174–180.
- R. Liu, H. Ye, X. Xiong, H. Liu. Fabrication of TiO2/ZnO composite
nanofibers by electrospinning and their photocatalytic property,
Mater. Chem. Phys., 121 (2010) 432–439.
- M. Pérez-Gonzáleza, S.A. Tomása, M. Morales-Luna,
M.A. Arvizu, M.M. Tellez-Cruz, Optical, structural, and
morphological properties of photocatalytic TiO2-ZnO thin films
synthesized by the sol–gel process, Thin Solid Films, 594 (2015)
304–309.
- M. Zalfani, B.V. Schueren, M. Mahdouan, R. Bourguiga, W.B. Yu,
M. Wu, O. Deparis, Y. Li, B.L. Su, ZnO quantum dots decorated
3DOM TiO2 nanocomposites: symbiose of quantum size effects
and photonic structure for highly enhanced photocatalytic
degradation of organic pollutants, Appl. Catal., B, 199 (2016)
187–198.
- A. Pérez-Larios, R. Lopez, A. Hernández-Gordillo,
F. Tzompantzia, R. Gómez, L.M. Torres-Guerra, Improved
hydrogen production from water splitting using TiO-ZnO
mixed oxides photocatalysts, Fuel, 100 (2012) 139–143.
- Y. Chen, C. Zhang, W. Huang, C. Yang, T. Huang, Y. Situ,
H. Huang, Synthesis of porous ZnO/TiO2 thin films with
superhydrophilicity and photocatalytic activity via a templatefree
sol-gel method, Surf. Coat. Technol., 258 (2014) 531–538.
- O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltaib, L. Kavan,
Raman spectra of titanium dioxide (anatase, rutile) with
identified oxygen isotopes (16, 17, 18), Phys. Chem. Chem.
Phys., 14 (2012) 14567–14572.
- L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura,
Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process, J. Cryst.
Growth, 264 (2004) 246–252.
- F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new
approach to measure the percentage of anatase TiO2 exposed
(001) facets, J. Phys. Chem. C, 116 (2012) 7515–7519.
- Z.W. Dong, C.F. Zhang, H. Deng, G.J. You, S.X. Qian, Raman
spectra of single micrometer-sized tubular ZnO, Mater. Chem.
Phys., 99 (2006) 160–163.
- N.P. Herring, L.S. Panchakarla, M.S. El-Shall, P-Type nitrogendoped
ZnO nanostructures with controlled shape and doping
level by facile microwave synthesis, Langmuir, 30 (2014)
2230–2240.
- N. Naseria, M. Yousefi, A.Z. Moshfegh, A comparative study
on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO
nanolayer systems under visible irradiation, Solar Energy,
85 (2011) 1972–1978.
- M.M. Karkare, Choice of precursor not affecting the size of
anatase TiO2 nanoparticles but affecting morphology under
broader view, Int. Nano Lett., 4 (2014) 111, doi: 10.1007/s40089-014-0111-x.
- H. Khan, D. Berk, Effect of a chelating agent on the
physicochemical properties of TiO2: characterization and
photocatalytic activity, Catal. Lett., 144 (2014) 890–904.
- D. Tsiourvas, A. Tsetsekou, M. Arkas, S. Diplas, E. Mastrogianni,
Covalent attachment of a bioactive hyperbranched polymeric
layer to titanium surface for the biomimetic growth of calcium
phosphates,
J. Mater. Sci.: Mater. Med., 22 (2011) 85–96.
- K. Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi,
R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders
at low temperature and optical properties study, Adv. Powder
Technol., 24 (2013) 618–624.
- F. Gualdrón-Reyes, A.M. Meléndez, I. González, L. Lartundo-Rojas, M.E. Niño-Gómez, Effect of metal substrate on
photo(electro)catalytic activity of B-doped graphene modified
TiO2 thin films: role of iron oxide nanoparticles at grain
boundaries of TiO2, Phys. Chem. C, 122 (2018) 297–306.
- M.I. Carreño-Lizcano, A.F. Gualdrón-Reyes, V. Rodríguez-González, J.A. Pedraza-Avella, M.E. Niño-Gómez,
Photoelectrocatalytic phenol oxidation employing nitrogen
doped TiO2-rGO films as photoanodes, Catal. Today, 341 (2020)
96–103.
- D. Sethi, R. Sakthivel, ZnO/TiO2 composites for photocatalytic
inactivation of Escherichia coli, J. Photochem. Photobiol., B,
168 (2017) 117–123.
- L.J. Hoyos, D.F. Rivera, A.F. Gualdrón-Reyes, R. Ospina,
J. Rodríguez-Pereira, J.L. Ropero-Veja,
M.E. Niño-Gómez,
Influence of immersion cycles during n-β-Bi2O3 sensitization
on the photoelectrochemical behaviour of N-F co-doped TiO2
nanotube, Appl. Surf. Sci., 423 (2017) 917–926.
- D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo,
F. González, I. González, Energetic states in SnO2–TiO2 structures
and their impact on interfacial charge transfer process, J. Mater.
Sci., 52 (2017) 260–275.
- T.H. Kim, S.D. Kim, H.Y. Kim, S.J. Lim, M.Lee, S. Yu,
Degradation and toxicity assessment of sulfamethoxazole and
chlortetracycline using electron beam, ozone and UV, J. Hazard.
Mater., 227–228 (2012) 237–242.
- S. Luo, Z. Wei, R. Spinney, Z. Zhang, D.D. Dionysiou,
L. Gao, L. Chai, D. Wang, R. Xiao, UV direct photolysis of
sulfamethoxazole and ibuprofen: an experimental and modelling
study, J. Hazard. Mater., 343 (2018) 132–139.
- G. Trovó, R.F.P. Nogueira, A. Agüera, C. Sirtori, A.R. Fernández-Alba, Photodegradation of sulfamethoxazole in various aqueous
media: persistence, toxicity and photoproducts assessment,
Chemosphere, 77 (2009) 1292–1298.
- L. Boreen, W.A. Arnold, K. McNeill, Photochemical fate of sulfa
drugs in the aquatic environment: sulfa drugs containing fivemembered
heterocyclic groups, Environ. Sci. Technol., 38 (2004)
3933–3940.
- J. Zhang, Y. Nosaka, Mechanism of the radical OH generation in
photocatalysis with TiO2 of different Crystalline types, J. Phys.
Chem., 118 (2014) 10824–10832.
- A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, S.M. Lee,
Nanocomposite thin films Ag0(NP)/TiO2 in the efficient
degradation of micropollutants from aqueous solutions: a
case study of tetracycline and sulfamethoxazole degradation,
J. Environ Manage., 220 (2018) 96–108.
- D. Nasuhoglu, V. Yargeau, D. Berk, Photo-degradation of
sulfamethoxazole (SMX) by photolytic and photocatalytic
processes in a batch reactor under UV-C radiation
(λmax = 254 nm), J. Hazard. Mater., 186 (2011) 67–75.
- H. Gong, W. Chu, Photodegradation of sulfamethoxazole with a
recyclable catalyst, Ind. Eng. Chem. Res., 54 (2015) 12763–12769.
- X. Xie, S. Li, H. Zhang, Z. Wang, H. Huang, Promoting charge
separation of biochar-based Zn-TiO2/pBC in the presence of
ZnO for efficient sulfamethoxazole photodegradation under
visible light irradiation, Sci. Total Environ., 659 (2019) 529–539.
- Y. Huang, L. Nengzi, X. Li, L. Meng, Q. Song, X. Cheng,
Fabrication of Cu2O/Bi25FeO40 nanocomposite and its enhanced
photocatalytic mechanism and degradation pathways of
sulfamethoxazole, Mater. Sci. Semicond. Process., 109 (2020)
104932, doi: 10.1016/j.mssp.2020.104932.
- G. Liu, H. Wang, D. Chen, C. Dai, Z. Zhang, Y. Feng,
Photodegradation performances and transformation
mechanism of sulfamethoxazole with CeO2/CN heterojunction
as photocatalyst, Sep. Purif. Technol., 237 (2020) 116329,
doi: 10.1016/j.seppur.2019.116329.
- M. Shirzad-Siboni, A. Khataee, B. Vahid, S.W. Joo, Synthesis,
Characterization and immobilization of ZnO nanosheets on
scallop shell for photocatalytic degradation of an insecticide,
Sci. Adv. Mater., 7 (2015) 806–814.
- F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Degradation of selected
pharmaceuticals in aqueous solution with UV and UV/H2O2,
Water Res., 43 (2009) 1766–1774.
- M. Valery, N. Mouamfon, W. Li, S. Lu, N. Chen, Z. Qiu, K. Lin,
Photodegradation of sulfamethoxazole applying UV- and VUV-based
processes, Water Air Soil Pollut., 218 (2011) 265–274.
- J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV
photolysis of selected pharmaceuticals, personal care products
and endocrine disruptors in aqueous solution, Water Res.,
84 (2015) 350–361.
- M. Długosz, P. Żmudzki, A. Kwiecień, K. Szczubiałka,
J. Krzek, M. Nowakowska, Photocatalytic degradation of
sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst, J. Hazard. Mater., 298 (2015)
146–153.
- C. Yang, C.L. Huang, T.C. Cheng, H.T. Lai, Inhibitory effect of
salinity on the photocatalytic degradation of three sulfonamide
antibiotics, Int. Biodeterior. Biodegrad., 102 (2015) 116–125.
- Y.B. Zhang, J. Zhou, Q.M. Xu, J.S. Cheng, Y.L. Luo, Y.J. Yuan,
Exogenous cofactors for the improvements of sulfamethoxazole
(SMX) biodegradation and biotransformation by Alcaligenes
faecalis, Sci. Total Environ., 565 (2016) 547–556.
- X. Li, Q.M. Xu, J.S. Cheng, Y.J. Yuan, Improving the
biodegradation of sulfamethoxazole and alleviating cytotoxicity
of its biotransformation by laccase producing system under
coculture of Pycnoporus sanguineus and Alcaligenes faecalis,
Bioresour. Technol., 220 (2016) 333–340.