References

  1. A.J. van der Ven, T.B. Vree, E.W. van Ewijk-Beneken Kolmer, P.P. Koopmans, J.W. van der Meer, Urinary recovery and kinetics of sulphamethoxazole and its metabolites in HIV seropositive patients and healthy volunteers after a single oral dose of sulphamethoxazole, Br. J. Clin. Pharmacol., 39 (1995) 621–625.
  2. N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of antibiotics during municipal water recycling treatment processes, Water Res., 44 (2010) 4295–4323.
  3. F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, M.A. Otura, Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine, Appl. Catal., B, 199 (2016) 331–341.
  4. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water Res., 42 (2008) 3498–3518.
  5. S. Willach, H.V. Lutze, K. Eckey, K. Löppenberg, M. Lüling, J.-B. Wolbert, D.M. Kujawinski, M.A. Jochmann,
    U. Karst, T.C. Schmidt, Direct photolysis of sulfamethoxazole using various irradiation sources and wavelength ranges—insights from degradation product analysis and compound-specific stable isotope analysis, Environ. Sci. Technol., 52 (2018) 1225–1233.
  6. X. Min, W. Li, Z. Wei, R. Spinney, D.D. Dionysiou, Y. Seo, C.J. Tang, Q. Li, R. Xiao, Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: a combined experimental and theoretical mechanistic study, Chem. Eng. J., 342 (2018) 211–219.
  7. F. Bonvin, J. Omlin, R. Rutler, W.B. Schweizer, P.J. Alaimo, T.J. Strathmann, K. McNeill, T. Kohn, Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: evidence for abiotic back-transformation, Environ. Sci. Technol., 47 (2013) 6746−6755.
  8. C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review, Ecotoxicol. Environ. Saf., 91 (2013) 1–9.
  9. K. Noguera-Oviedo, D.S. Aga, Lessons learned from more than two decades of research on emerging contaminants in the environment, J. Hazard. Mater., 316 (2016) 242–251.
  10. P. Yan, Q. Sui, S. Lyu, H. Hao, H.F. Schröder, W. Gebhardt, Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment, Sci. Total Environ., 640–641 (2018) 973–980.
  11. L. Gao, D. Minakata, Z. Wei, R. Spinney, D.D. Dionysiou, C.J. Tang, L. Chai, R. Xiao, Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals, Environ. Sci. Technol., 53 (2019) 342–353.
  12. A. Göbel, A. Thomsen, C.S. McArdell, A. Joss, W. Giger, Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment, Environ. Sci. Technol., 39 (2005) 3981−3989.
  13. M. Radke, C. Lauwigi, G. Heinkele, T.E. Mürdter, M. Letzel, Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test, Environ. Sci. Technol., 43 (2009) 3135−3141.
  14. K.L. Carstens, A.D. Gross, T.B. Moorman, J.R. Coats, Sorption and photodegradation processes govern distribution and fate of sulfamethazine in freshwater-sediment microcosms, Environ. Sci. Technol., 47 (2013) 10877–10883.
  15. J. Gou, Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng, X. Li, M. Xie, Q. Cheng, Fabrication of Ag2O/TiO2-zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin, Chem. Eng. J., 308 (2017) 818–826.
  16. J. Song, X. Wang, J. Ma, X. Wang, J. Wang, J. Zhao, Visible-light driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: performance, mechanisms and implications, Appl. Catal., B, 226 (2018) 83–92.
  17. M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogendoped TiO2 photocatalysts and study on their photocatalytic activities in visible light, Appl. Catal., B, 89 (2009) 563–569.
  18. A. Hernández-Ramírez, I. Medina-Ramírez, Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications, Springer, New York, 2015.
  19. S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials synthesis, characterization techniques and theoretical simulations, Chem. Soc. Rev., 44 (2015) 2893–2939.
  20. J.R. Melo, A.F. Gualdrón-Reyes, N.R.C. Fernandes, M.L. Gimenes, M.I. Carreño-Lizcano, I.N. Sequeda-Pico,
    J. Rodríguez-Pereira, V. Baldovino-Medrano, M.E. Niño-Gómez, How does the Zn-precursor nature impact carrier transfer in ZnO/Zn-TiO2 nanostructures? Organic vs. inorganic anions, New J. Chem., 43 (2019) 19085–19096.
  21. M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials, Chem. Rev., 114 (2014) 9853–9889.
  22. S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, P.S. Devi, Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity, Appl. Catal., B, 165 (2015) 128–138.
  23. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  24. F.X. Xiao, S.F. Hung, H.B. Tao, J. Miao, H.B. Yang, B. Liu, Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D hybrid nanostructures, Nanoscale, 24 (2014) 14950–14961.
  25. M. Kwiatkowski, I. Bezverkhyya, M. Skompska, ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties, Mater. Chem. A, 3 (2015) 12748–12760.
  26. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, Wan M.A. Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation, J. Mol. Liq., 258 (2018) 354–365.
  27. S. Mukhopadhyay, D. Maiti, S. Chatterjee, P.S. Devi, G.S. Kumar, Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage, Phys. Chem. Chem. Phys., 18 (2016) 31622—31633.
  28. M. Tobajas, C. Belver, J.J. Rodriguez, Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures, Chem. Eng. J., 309 (2017) 596–606.
  29. L.V. Cardoso, D. Tomasini, M.R.F. Sampaio, S.S. Caldas, N. Kleemann, E.G. Primel, F.F. Gonçalves, Optimization and validation of a method using SPE and LC-APCI-MS/MS for determination of pharmaceuticals in surface and public supply water, J. Braz. Chem. Soc., 22 (2011) 1944–1952.
  30. K. Lehnberg L. Kovalova, C. Kazner, T. Wintgens, T. Schettgen, T. Melin, J. Hollender, W. Dott., Degradation of Selected Organic Micropollutants from WWTP Effluent with Powdered Activated Carbon and Retention by Nanofiltration, Y.J. Kim, U. Platt, M.B. Gu, H. Iwahashi, Eds., Atmospheric and Biological Environmental Monitoring, Springer, Dordrecht, Heidelberg, New York, London, 2009, pp. 161–178.
  31. S.O. García, G.P. Pinto, P.A. García-Encina, R.I. Mata, Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case, J. Environ. Manage., 129 (2013) 389–397.
  32. R. Wahab, I.H. Hwang, Y.S. Kim, H.S. Shin, Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method, Chem. Eng. J., 168 (2011) 359–366.
  33. M. Gusatti, D.A.R. Souza, N.C. Kuhnen, H.G. Riella, Growth of variable aspect ratio ZnO nanorods by solochemical processing, J. Mater. Sci. Technol., 31 (2015) 10–15.
  34. M.S.M. Ghazali, A. Zakaria, Z. Rizwan, H.M. Kamari, M. Hashim, M.H.M Zaid, R. Zamiri, Use of a reflectance spectroscopy accessory for optical characterization of ZnO-BiO2O3-TiO2 ceramics, Int. J. Mol. Sci., 12 (2011) 1496–1504.
  35. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, Int. Nano Lett., 3 (2013) 2–4.
  36. M. Meinert, G. Reiss, Electronic structure and optical band gap determination of NiFe2O4, J. Phys.: Condens. Matter, 26 (2014) 1–4.
  37. S. Jorfi, G. Barzegar, M. Ahmadi, R.D.C. Soltanid, N.J. Haghighifard, A. Takdastan, R. Saeedi, M. Abtahi, Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles, J. Environ. Manage., 177 (2016) 111–118.
  38. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures of merit for the technical development and application of advanced oxidation processes, J. Adv. Oxid. Technol., 1 (1996) 13–17.
  39. J.C. Garcia, T.K.F.S. Freitas, S.M. Palácio, E. Ambrósio, M.T.F. Souza, Toxicity assessment of textile effluents treated by advanced oxidative process (UV/TiO2 and UV/TiO2/H2O2) in the species Artemia salina L., Environ. Monit. Assess., 185 (2013) 2179–2187.
  40. M.C. Ortega, M.T. Moreno, J. Ordovás, M.T. Aguado, Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates, Sci. Hortic., 66 (1996) 125–132.
  41. United States Environmental Protection Agency (USEPA), Ecological Effects Test Guidelines OPPTS 850.4200 – Seed germination/Root Elongation Toxicity Test. P.a. T. S. Prevention, Washington D.C., 1996.
  42. T. Giannakopouloua, N. Todorova, M. Giannouri, J. Yu, C. Trapalis, Optical and photocatalytic properties of composite TiO2/ZnO thin films, Catal. Today, 230 (2014) 174–180.
  43. R. Liu, H. Ye, X. Xiong, H. Liu. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property, Mater. Chem. Phys., 121 (2010) 432–439.
  44. M. Pérez-Gonzáleza, S.A. Tomása, M. Morales-Luna, M.A. Arvizu, M.M. Tellez-Cruz, Optical, structural, and morphological properties of photocatalytic TiO2-ZnO thin films synthesized by the sol–gel process, Thin Solid Films, 594 (2015) 304–309.
  45. M. Zalfani, B.V. Schueren, M. Mahdouan, R. Bourguiga, W.B. Yu, M. Wu, O. Deparis, Y. Li, B.L. Su, ZnO quantum dots decorated 3DOM TiO2 nanocomposites: symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants, Appl. Catal., B, 199 (2016) 187–198.
  46. A. Pérez-Larios, R. Lopez, A. Hernández-Gordillo, F. Tzompantzia, R. Gómez, L.M. Torres-Guerra, Improved hydrogen production from water splitting using TiO-ZnO mixed oxides photocatalysts, Fuel, 100 (2012) 139–143.
  47. Y. Chen, C. Zhang, W. Huang, C. Yang, T. Huang, Y. Situ, H. Huang, Synthesis of porous ZnO/TiO2 thin films with superhydrophilicity and photocatalytic activity via a templatefree sol-gel method, Surf. Coat. Technol., 258 (2014) 531–538.
  48. O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltaib, L. Kavan, Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18), Phys. Chem. Chem. Phys., 14 (2012) 14567–14572.
  49. L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura, Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process, J. Cryst. Growth, 264 (2004) 246–252.
  50. F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets, J. Phys. Chem. C, 116 (2012) 7515–7519.
  51. Z.W. Dong, C.F. Zhang, H. Deng, G.J. You, S.X. Qian, Raman spectra of single micrometer-sized tubular ZnO, Mater. Chem. Phys., 99 (2006) 160–163.
  52. N.P. Herring, L.S. Panchakarla, M.S. El-Shall, P-Type nitrogendoped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis, Langmuir, 30 (2014) 2230–2240.
  53. N. Naseria, M. Yousefi, A.Z. Moshfegh, A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation, Solar Energy, 85 (2011) 1972–1978.
  54. M.M. Karkare, Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view, Int. Nano Lett., 4 (2014) 111, doi: 10.1007/s40089-014-0111-x.
  55. H. Khan, D. Berk, Effect of a chelating agent on the physicochemical properties of TiO2: characterization and photocatalytic activity, Catal. Lett., 144 (2014) 890–904.
  56. D. Tsiourvas, A. Tsetsekou, M. Arkas, S. Diplas, E. Mastrogianni, Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates,
    J. Mater. Sci.: Mater. Med., 22 (2011) 85–96.
  57. K. Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study, Adv. Powder Technol., 24 (2013) 618–624.
  58. F. Gualdrón-Reyes, A.M. Meléndez, I. González, L. Lartundo-Rojas, M.E. Niño-Gómez, Effect of metal substrate on photo(electro)catalytic activity of B-doped graphene modified TiO2 thin films: role of iron oxide nanoparticles at grain boundaries of TiO2, Phys. Chem. C, 122 (2018) 297–306.
  59. M.I. Carreño-Lizcano, A.F. Gualdrón-Reyes, V. Rodríguez-González, J.A. Pedraza-Avella, M.E. Niño-Gómez, Photoelectrocatalytic phenol oxidation employing nitrogen doped TiO2-rGO films as photoanodes, Catal. Today, 341 (2020) 96–103.
  60. D. Sethi, R. Sakthivel, ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli, J. Photochem. Photobiol., B, 168 (2017) 117–123.
  61. L.J. Hoyos, D.F. Rivera, A.F. Gualdrón-Reyes, R. Ospina, J. Rodríguez-Pereira, J.L. Ropero-Veja,
    M.E. Niño-Gómez, Influence of immersion cycles during n-β-Bi2O3 sensitization on the photoelectrochemical behaviour of N-F co-doped TiO2 nanotube, Appl. Surf. Sci., 423 (2017) 917–926.
  62. D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, F. González, I. González, Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process, J. Mater. Sci., 52 (2017) 260–275.
  63. T.H. Kim, S.D. Kim, H.Y. Kim, S.J. Lim, M.Lee, S. Yu, Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV, J. Hazard. Mater., 227–228 (2012) 237–242.
  64. S. Luo, Z. Wei, R. Spinney, Z. Zhang, D.D. Dionysiou, L. Gao, L. Chai, D. Wang, R. Xiao, UV direct photolysis of sulfamethoxazole and ibuprofen: an experimental and modelling study, J. Hazard. Mater., 343 (2018) 132–139.
  65. G. Trovó, R.F.P. Nogueira, A. Agüera, C. Sirtori, A.R. Fernández-Alba, Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment, Chemosphere, 77 (2009) 1292–1298.
  66. L. Boreen, W.A. Arnold, K. McNeill, Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing fivemembered heterocyclic groups, Environ. Sci. Technol., 38 (2004) 3933–3940.
  67. J. Zhang, Y. Nosaka, Mechanism of the radical OH generation in photocatalysis with TiO2 of different Crystalline types, J. Phys. Chem., 118 (2014) 10824–10832.
  68. A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, S.M. Lee, Nanocomposite thin films Ag0(NP)/TiO2 in the efficient degradation of micropollutants from aqueous solutions: a case study of tetracycline and sulfamethoxazole degradation, J. Environ Manage., 220 (2018) 96–108.
  69. D. Nasuhoglu, V. Yargeau, D. Berk, Photo-degradation of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax = 254 nm), J. Hazard. Mater., 186 (2011) 67–75.
  70. H. Gong, W. Chu, Photodegradation of sulfamethoxazole with a recyclable catalyst, Ind. Eng. Chem. Res., 54 (2015) 12763–12769.
  71. X. Xie, S. Li, H. Zhang, Z. Wang, H. Huang, Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation, Sci. Total Environ., 659 (2019) 529–539.
  72. Y. Huang, L. Nengzi, X. Li, L. Meng, Q. Song, X. Cheng, Fabrication of Cu2O/Bi25FeO40 nanocomposite and its enhanced photocatalytic mechanism and degradation pathways of sulfamethoxazole, Mater. Sci. Semicond. Process., 109 (2020) 104932, doi: 10.1016/j.mssp.2020.104932.
  73. G. Liu, H. Wang, D. Chen, C. Dai, Z. Zhang, Y. Feng, Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO2/CN heterojunction as photocatalyst, Sep. Purif. Technol., 237 (2020) 116329, doi: 10.1016/j.seppur.2019.116329.
  74. M. Shirzad-Siboni, A. Khataee, B. Vahid, S.W. Joo, Synthesis, Characterization and immobilization of ZnO nanosheets on scallop shell for photocatalytic degradation of an insecticide, Sci. Adv. Mater., 7 (2015) 806–814.
  75. F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2, Water Res., 43 (2009) 1766–1774.
  76. M. Valery, N. Mouamfon, W. Li, S. Lu, N. Chen, Z. Qiu, K. Lin, Photodegradation of sulfamethoxazole applying UV- and VUV-based processes, Water Air Soil Pollut., 218 (2011) 265–274.
  77. J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution, Water Res., 84 (2015) 350–361.
  78. M. Długosz, P. Żmudzki, A. Kwiecień, K. Szczubiałka, J. Krzek, M. Nowakowska, Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst, J. Hazard. Mater., 298 (2015) 146–153.
  79. C. Yang, C.L. Huang, T.C. Cheng, H.T. Lai, Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics, Int. Biodeterior. Biodegrad., 102 (2015) 116–125.
  80. Y.B. Zhang, J. Zhou, Q.M. Xu, J.S. Cheng, Y.L. Luo, Y.J. Yuan, Exogenous cofactors for the improvements of sulfamethoxazole (SMX) biodegradation and biotransformation by Alcaligenes faecalis, Sci. Total Environ., 565 (2016) 547–556.
  81. X. Li, Q.M. Xu, J.S. Cheng, Y.J. Yuan, Improving the biodegradation of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture of Pycnoporus sanguineus and Alcaligenes faecalis, Bioresour. Technol., 220 (2016) 333–340.