References
  -  V.K. Sharma, R. Zboril, T.J. McDonald, Formation and toxicity
    of brominated disinfection byproducts during chlorination
    and chloramination of water: a review, J. Environ. Sci. Health.,
    Part B, 49 (2013) 212–228. 
-  Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Comparison
    of ferrate and ozone pre-oxidation on disinfection byproduct
    formation from chlorination and chloramination, Water Res.,
    156 (2019) 110–124. 
-  V. Rougé, U. von Gunten, M. Lafont de Sentenac, M. Massi,
    P.J. Wright, J.-P. Croué, S. Allard, Comparison of the impact
    of ozone, chlorine dioxide, ferrate and permanganate preoxidation
    on organic disinfection byproduct formation during
    post-chlorination, Environ. Sci. Water Res. Technol., 6 (2020)
    2382–2395. 
-  Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Bromide
    oxidation by ferrate(VI): the formation of active bromine and
    bromate, Water Res., 96 (2016) 188–197. 
-  T. Yu, Y. Chen, Effects of elevated carbon dioxide on
    environmental microbes and its mechanisms: a review,
    Sci. Total Environ., 655 (2019) 865–879. 
-  A.V. Suslov, I.N. Suslova, B.F. Yarovoy, A.Yu. Shadrin,
    A.A. Murzin, N.V. Sapozhnikova, A.A. Lumpov, 
 A.S. Dormidonova,
    Inactivation of microorganisms using supercritical
    CO2, Supercrit. Fluids: Theory Pract., 3 (2008) 3–12 (in Russian).
-  L. Garcia-Gonzalez, A.H. Geeraerd, S. Spilimbergo, K. Elst,
    L. Van Ginneken, J. Debevere, J.F. Van Impe, 
 F. Devlieghere,
    High pressure carbon dioxide inactivation of microorganisms
    in foods: the past, the present and the future, Int. J. Food
    Microbiol., 117 (2007) 1–28.
-  I. Paniagua-Martínez, A. Mulet, M.A. García-Alvarado,
    J. Benedito, Inactivation of the microbiota and effect on the
    quality attributes of pineapple juice using a continuous flow
    ultrasound-assisted supercritical carbon dioxide system, Food
    Sci. Technol. Int., 24 (2018) 547–554. 
-  B.G. Werner, J.H. Hotchkiss, Continuous flow nonthermal
    CO2 processing: the lethal effects of subcritical and supercritical
    CO2 on total microbial populations and bacterial spores in
  raw milk, J. Dairy Sci., 89 (2006) 872–881. 
-  M. Cuppini, J. Zeni, J. Barbosa, E. Franceschi, G. Toniazzo,
    R.L. Cansian, Inactivation of Staphylococcus aureus in raw
    salmon with supercritical CO2 using experimental design, Food
  Sci. Technol., 36 (2016) 8–11. 
-  N. Ribeiro, G.C. Soares, V. Santos-Rosales, A. Concheiro,
    C. Alvarez-Lorenzo, C.A. García-González, A.L. Oliveira,
    A new era for sterilization based on supercritical CO2
  technology, J. Biomed. Mater. Res. Part B, 108 (2020) 399–428. 
-  Md. S. Hossain, N.N. Nik Ab Rahman, V. Balakrishnan,
    A.F.M. Alkarkhi, Z. Ahmad Rajion, M.O. Ab Kadir, Optimizing
    supercritical carbon dioxide in the inactivation of bacteria in
    clinical solid waste by using response surface methodology,
    Waste Manage., 38 (2015) 462–473. 
-  Y.Y. Chen, F. Temelli, M.G. Gänzle, Mechanisms of inactivation
    of dry Escherichia coli by high-pressure carbon dioxide,
  Appl. Environ. Microbiol., 83 (2017) e00062-17, doi: 10.1128/AEM.00062-17. 
-  F. Kobayashi, Y. Hayata, H. Ikeura, M. Tamaki, N. Muto,
    Y. Osajima, Inactivation of Escherichia coli by CO2 microbubbles
    at a lower pressure and near room temperature, Transactions
    of the ASABE (Am. Soc. Agric. Biol. Eng.), 52 (2009) 1621–1626. 
-  F. Kobayashi, S. Odake, Intracellular acidification and damage
    of cellular membrane of Saccharomyces pastorianus by lowpressure
    carbon dioxide microbubbles, Food Control, 71 (2017)
    365–370. 
-  C. Yao, X. Li, W. Bi, C. Jiang, Relationship between membrane
    damage, leakage of intracellular compounds, and inactivation
    of Escherichia coli treated by pressurized CO2, J. Basic Microbiol.,
    54 (2013) 858–865. 
-  M.K. Oulé, K. Tano, A.-M. Bernier, J. Arul, Escherichia coli inactivation mechanism by pressurized CO2, Can. J. Microbiol.,
    52 (2006) 1208–1217. 
-  F. Kobayashi, S. Odake, Temperature-dependency on the
    inactivation of Saccharomyces pastorianus 
 by low-pressure
    carbon dioxide microbubbles, J. Food Sci. Technol., 57 (2020)
    588–594.
-  W. Klangpetch, S. Noma, N. Igura, M. Shimoda, The effect of
    low-pressure carbonation on the heat inactivation of Escherichia
    coli, Biosci. Biotechnol., Biochem., 75 (2011) 1945–1950. 
-  Y. Chengsong, L. Huirong, Z. Menglu, C. Sheng, Y. Xin,
    Characterization and potential mechanisms of highly antibiotic
    tolerant VBNC Escherichia coli induced by low level chlorination,
    Sci. Rep., 10 (2020), doi:10.1038/s41598-020-58106-3. 
-  S.J. Schink, E. Biselli, C. Ammar, U. Gerland, Death rate of
    E. coli during starvation is set by maintenance cost and biomass
    recycling, Cell Syst., 9 (2019) 64–73. 
-  MI 10.2.1-113–2005, Sanitary and Microbiological Quality
    Control of Drinking Water, Order of the Ministry of Health of
    Ukraine from 03.02.2005 No. 60 (in Ukrainian). 
-  V.V. Goncharuk, N.G. Potapchenko, O.S. Savluk, V.N. Kosinova,
    A.N. Sova, Disinfection of water by ozone: effect of inorganic
    impurities on kinetics of water disinfection, J. Water Chem.
    Technol., 23 (2001) 55–63. 
-  DSTU 8887:2019, Water Quality. Determination of Microorganisms
    in Viable But Nonculturable State in Water, Kyiv.:
    SE “UkrNDNC”, 2020, 10 p, (in Ukrainian). 
-  D. Pinto, V. Almeida, M. Almeida Santos, L. Chambel,
    Resuscitation of Escherichia coli VBNC cells depends on a variety
    of environmental or chemical stimuli, J. Appl. Microbiol.,
    110 (2011) 1601–1611. 
-  C. Ortuño, M.T. Martínez-Pastor, A. Mulet, J. Benedito,
    Supercritical carbon dioxide inactivation of Escherichia coli and
    Saccharomyces cerevisiae in different growth stages, J. Supercrit.
    Fluids, 63 (2012) 8–15. 
-  W.F. Wolkers, H. Oldenhof, F. Tang, J. Han, J. Bigalk, H. Sieme,
    Factors affecting the membrane permeability barrier function
    of cells during preservation technologies, Langmuir, 35 (2019)
    7520–7528. 
-  H.H. Mantsch, R.N. McElhaney, Phospholipid phase transitions
    in model and biological membranes as studied by infrared
    spectroscopy, Chem. Phys. Lipids, 57 (1991) 213–226. 
-  T. Ding, Y. Su, Q. Xiang, X. Zhao, S. Chen, X. Ye, D. Liu,
    Significance of viable but nonculturable Escherichia coli:
    induction, detection, and control, J. Microbiol. Biotechnol.,
    27 (2017) 417–428. 
-  V.V. Goncharuk, A.V. Rudenko, M.N. Saprykina, E.S. Bolgova,
    Detection of microorganisms in nonculturable state in
    chlorinated water, J. Water Chem. Technol., 40 (2018) 40–45. 
-  Y. Fu, Y. Jia, J. Fan, C. Yu, C. Yu, C. Shen, Induction of Escherichia
    coli O157:H7 into a viable but non-culturable state by high
    temperature and its resuscitation, Environ. Microbiol. Rep.,
    12 (2020) 568–577. 
-  F. Zhao, X. Bi, Y. Hao, X. Liao, Induction of viable but
    nonculturable Escherichia coli O157:H7 by high pressure CO2
    and its characteristics, PLoS One, 8 (2013) e62388, doi: 10.1371/journal.pone.0062388. 
-  S. Giulitti, C. Cinquemani, A. Quaranta, S. Spilimbergo, Real
    time intracellular pH dynamics in Listeria innocua under
    CO2 and N2O pressure, J. Supercrit. Fluids, 58 (2011) 385–390. 
-  S. Giulitti, C. Cinquemani, S. Spilimbergo, High pressure gases:
    role of dynamic intracellular pH in pasteurization, Biotechnol.
    Bioeng., 108 (2011) 1211–1214.