References

  1. D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol., 16 (2019) 1193–1226.
  2. A. Rahmani, M. Leili, A. Seid-Mohammadi, A. Shabanloo, A. Ansari, D. Nematollahi, S. Alizadeh, Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes, J. Cleaner Prod., 322 (2021) 129094, doi: 10.1016/j. jclepro.2021.129094.
  3. M.R. Samarghandi, A. Dargahi, A. Rahmani, A. Shabanloo, A. Ansari, D. Nematollahi, Application of a fluidized threedimensional electrochemical reactor with Ti/SnO2–Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: process optimization and degradation pathway, Chemosphere, 279 (2021) 130640, doi: 10.1016/j.chemosphere.2021.130640.
  4. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  5. S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents — a review, Process Saf. Environ. Prot., 113 (2018) 48–67.
  6. E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  7. P. Palenzuela, M. Micari, B. Ortega-Delgado, F. Giacalone, G. Zaragoza, D.C. Alarcón-Padilla, A. Cipollina,
    A. Tamburini, G. Micale, Performance analysis of a RED-MED salinity gradient heat engine, Energies, 11 (2018) 3385, doi: 10.3390/en11123385.
  8. R. Long, B. Li, Z. Liu, W. Liu, Hybrid membrane distillationreverse electrodialysis electricity generation system to harvest low-grade thermal energy, J. Membr. Sci., 525 (2017) 107–115.
  9. X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang, X. Huang, Power generation by coupling reverse electrodialysis and ammonium bicarbonate: implication for recovery of waste heat, Electrochem. Commun., 19 (2012) 25–28.
  10. S. Xu, Q. Leng, D. Jin, X. Wu, Z. Xu, P. Wang, D. Wu, F. Dong, Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy, Desalination, 495 (2020) 114541, doi: 10.1016/j. desal.2020.114541.
  11. S. Xu, Q. Leng, X. Wu, Z. Xu, J. Hu, D. Wu, D. Jing, P. Wang, F. Dong, Influence of output current on decolorization efficiency of azo dye wastewater by a series system with multi-stage reverse electrodialysis reactors, Energy Convers. Manage., 228 (2021) 113639, doi: 10.1016/j.enconman.2020.113639.
  12. P.F. Ma, X.G. Hao, A. Galia, O. Scialdone, Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack, Chemosphere, 248 (2020) 125994, doi: 10.1016/j.chemosphere.2020.125994.
  13. F. Zhang, S. Xu, D. Feng, S. Chen, R. Du, C. Su, B. Shen, A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine, Desalination, 404 (2017) 112–120.
  14. D. González, J. Amigo, F. Suárez, Membrane distillation: perspectives for sustainable and improved desalination, Renewable Sustainable Energy Rev., 80 (2017) 238–259.
  15. J. Wang, S. Chen, X. Mu, S. Shen, Thermodynamic analysis of multistage flash distillation application in wastewater treatment, Int. J. Energy Clean Environ., 19 (2018) 85–91.
  16. O. Scialdone, A. D’Angelo, E. De Lumè, A. Galia, Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients, Electrochim. Acta, 137 (2014) 258–265.
  17. O. Scialdone, A. D’Angelo, A. Galia, Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients, J. Electroanal. Chem., 738 (2015) 61–68.
  18. Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis, Electrochim. Acta, 269 (2018) 128–135.
  19. M. Tedesco, A. Cipollina, A. Tamburini, I.D.L. Bogle, G. Micale, A simulation tool for analysis and design of reverse electrodialysis using concentrated brines, Chem. Eng. Res. Des., 93 (2015) 441–456.
  20. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  21. E.B. Cavalcanti, S. Garcia-Segura, F. Centellas, E. Brillas, Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products, Water Res., 47 (2013) 1803–1815.
  22. F. Zhang, C.P. Feng, W.Q. Li, J.G. Cui, Indirect electrochemical oxidation of dye wastewater containing Acid Orange 7 using Ti/RuO2-Pt electrode, Int. J. Electrochem. Sci., 9 (2014) 943–954.
  23. O. Ganzenko, C. Trellu, N. Oturan, D. Huguenot, Y. Péchaud, E.D. van Hullebusch, M.A. Oturan, Electro-Fenton treatment of a complex pharmaceutical mixture: mineralization efficiency and biodegradability enhancement, Chemosphere, 253 (2020) 126659, doi: 10.1016/j.chemosphere.2020.126659.
  24. P.F. Ma, H.R. Ma, A. Galia, S. Sabatino, O. Scialdone, Reduction of oxygen to H2O2 at carbon felt cathode in undivided cells. Effect of the ratio between the anode and the cathode surfaces and of other operative parameters, Sep. Purif. Technol., 208 (2019) 116–122.
  25. J. Herney-Ramirez, A.M.T. Silva, M.A. Vicente, C.A. Costa, L.M. Madeira, Degradation of Acid Orange 7 using a saponitebased catalyst in wet hydrogen peroxide oxidation: kinetic study with the Fermi’s equation, Appl. Catal., B, 101 (2011) 197–205.
  26. D. Ghime, P. Ghosh, Decolorization of diazo dye trypan blue by electrochemical oxidation: kinetics with a model based on the Fermi’s equation, J. Environ. Chem. Eng., 8 (2020) 102792, doi:10.1016/j.jece.2018.11.037.
  27. L. Labiadh, A. Barbucci, M.P. Carpanese, A. Gadri, S. Ammar, M. Panizza, Comparative depollution of Methyl orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes, J. Electroanal. Chem., 766 (2016) 94–99.
  28. D. Gumus, F. Akbal, Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Saf. Environ. Prot., 103 (2016) 252–258.
  29. M. Malakootian, A. Moridi, Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions, Process Saf. Environ. Prot., 111 (2017) 138–147.
  30. H. Lin, N. Oturan, J. Wu, H. Zhang, M.A. Oturan, Cold incineration of sucralose in aqueous solution by electro-Fenton process, Sep. Purif. Technol., 173 (2017) 218–225.
  31. V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent – a review, J. Environ. Manage., 128 (2013) 949–963.
  32. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  33. Q. Lei, B.G. Wang, P.C. Wang, S. Liu, Hydrogen generation with acid/alkaline amphoteric water electrolysis, J. Energy Chem., 38 (2019) 162–169.
  34. S. Qiu, D. He, J.X. Ma, T.X. Liu, T.D. Waite, Kinetic modeling of the electro-fenton process: quantification of reactive oxygen species generation, Electrochim. Acta, 176 (2015) 51–58.
  35. H.Q. He, Z. Zhou, Electro-Fenton process for water and wastewater treatment, Crit. Rev. Env. Sci. Technol., 47 (2017) 2100–2131.
  36. B. Hou, H. Han, S. Jia, H. Zhuang, P. Xu, K. Li, Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst, J. Taiwan Inst. Chem. Eng., 60 (2016) 352–360.
  37. Z. Yi, C. Yanqing, S.U.N. Peide, Experiment and kinetic model for Methyl orange wastewater removal by electrocoagulation, Huagong Xuebao (Chin. Ed.), 60 (2009) 2339–2345.
  38. S.Y. Lee, G.A. Gagnon, Growth and structure of flocs following electrocoagulation, Sep. Purif. Technol., 163 (2016) 162–168.
  39. B. Ramirez-Pereda, A.A. Alvarez-Gallegos, S. Silva-Martinez, J.G. Rangel-Peraza, Y.A. Bustos-Terrones, Evaluation of the simultaneous use of two compartments of an electrochemical reactor for the elimination of azo dyes, J. Electroanal. Chem., 855 (2019) 113593, doi: 10.1016/j.jelechem.2019.113593.
  40. B. Ramirez, V. Rondan, L. Ortiz-Hernandez, S. Silva-Martinez, A. Alvarez-Gallegos, Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor, J. Environ. Manage., 171 (2016) 29–34.
  41. J. Li, H. Lin, K. Zhu, H. Zhang, Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis, Chemosphere, 188 (2017) 139–147.