References

  1. D.B. Walker, D.J. Baumgartner, C.P. Gerba, K. Fitzsimmons, Chapter 16 – Surface Water Pollution, Academic Press, 2019, pp. 261–292.
  2. S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques, Appl. Water Sci., 7 (2017) 1043–1067.
  3. A.L. Srivastav, M. Ranjan, Chapter 1 – Inorganic Water Pollutants, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic Pollutants in Water, Elsevier, 2020, pp. 1–15.
  4. Y. Sun, S. Zhou, P.-C. Chiang, K.J. Shah, Evaluation and optimization of enhanced coagulation process: water and energy nexus, Water-Energy Nexus, 2 (2019) 25–36.
  5. C.S. Lee, J. Robinson, M.F. Chong, A review on application of flocculants in wastewater treatment, Process Saf. Environ. Prot., 92 (2014) 489–508.
  6. H. Wei, B. Gao, J. Ren, A. Li, H. Yang, Coagulation/flocculation in dewatering of sludge: a review, Water Res., 143 (2018) 608–631.
  7. B. Xiong, R.D. Loss, D. Shields, T. Pawlik, R. Hochreiter, A.L. Zydney, M. Kumar, Polyacrylamide degradation and its implications in environmental systems, npj Clean Water, 1 (2018) 17,
    doi:10.1038/s41545-018-0016-8.
  8. W. Brostow, H.E.H. Lobland, S. Pal, R.P. Singh, Polymeric flocculants for wastewater and industrial effluent treatment, J. Mater. Educ., 31 (2009) 157–166.
  9. B. Zaman, N. Hardyanti, M. Arief Budiharjo, S. Budi Prasetyo, A. Ramadhandi, A. Tri Listiyawati, Natural flocculant vs. chemical flocculant where is better to used in wastewater treatment, IOP Conf. Ser.: Mater. Sci. Eng., 852 (2020) 12014, doi: 10.1088/1757-899x/852/1/012014.
  10. V. Ajao, H. Bruning, H. Rijnaarts, H. Temmink, Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances, Chem. Eng. J., 349 (2018) 622–632.
  11. S. Pal, T. Nasim, A. Patra, S. Ghosh, A.B. Panda, Microwave assisted synthesis of polyacrylamide grafted dextrin (Dxtg- PAM): development and application of a novel polymeric flocculant, Int. J. Biol. Macromol., 47 (2010) 623–631.
  12. G. Xia, J. Wan, J. Zhang, X. Zhang, L. Xu, J. Wu, J. He, J. Zhang, Cellulose-based films prepared directly from waste newspapers via an ionic liquid, Carbohydr. Polym., 151 (2016) 223–229.
  13. V. Kumar, P. Pathak, N.K. Bhardwaj, Waste paper: an underutilized but promising source for nanocellulose mining, Waste Manage., 102 (2020) 281–303.
  14. R.M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, H. Kargarzadeh, Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius), Carbohydr. Polym., 88 (2012) 772–779.
  15. S. Mishra, A. Mukul, G. Sen, U. Jha, Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment, Int. J. Biol. Macromol., 48 (2011) 106–111.
  16. S.-C. Kim, Application of response surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater, J. Ind. Eng. Chem., 38 (2016) 93–102.
  17. W.H. Danial, Z. Abdul Majid, M.N. Mohd Muhid, S. Triwahyono, M.B. Bakar, Z. Ramli, The reuse of wastepaper for the extraction of cellulose nanocrystals, Carbohydr. Polym., 118 (2015) 165–169.
  18. V. Kumar, S. Naithani, D. Pandey, Optimization of reaction conditions for grafting of α-cellulose isolated from Lantana camara with acrylamide, Carbohydr. Polym., 86 (2011) 760–768.
  19. R. Das, S. Ghorai, S. Pal, Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: an efficient biodegradable flocculant, Chem. Eng. J., 229 (2013) 144–152.
  20. X. Yu, X. Huang, C. Bai, X. Xiong, Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant, Environ. Sci. Pollut. Res., 26 (2019) 32859–32865.