1. T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: a review, Renewable Sustainable Energy Rev., 14 (2010) 217–232.
  2. Y. Liang, Producing liquid transportation fuels from heterotrophic microalgae, Appl. Energy, 104 (2013) 860–868.
  3. G.H. Huang, F. Chen, D. Wei, X.W. Zhang, G. Chen, Biodiesel production by microalgal biotechnology, Appl. Energy, 87 (2010) 38–46.
  4. O. Embury, C.J. Merchant, M.J. Filipiak, A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: basis in radiative transfer, Remote Sens. Environ., 116 (2012) 32–46.
  5. G. Gouveia, A.C. Oliveira, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36 (2009) 269–274.
  6. S. Deshmukh, K. Bala, R. Kumar, Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production, Environ. Sci. Pollut. Res., 26 (2019) 24462–24473.
  7. A.P. Dean, D.C. Sigee, J.K. Pittman, Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae, Bioresour. Technol., 101 (2010) 4499–4507.
  8. F. Bumbak, S. Cook, V. Zachleder, S. Hauser, K. Kovar, Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations, Appl. Microbiol. Biotechnol., 91 (2011) 31–46.
  9. O. Perez-Garcia, Y. Bashan, Microalgal Heterotrophic and Mixotrophic Culturing for Bio-refining: From Metabolic Routes to Techno-economics, A. Prokop, R. Bajpai, M. Zappi, Eds., Algal Biorefineries, Springer, Cham, 2015, pp. 61–131.
  10. O. Perez-Garcia, F.M. Escalante, L.E. de-Bashan, Y. Bashan, Heterotrophic cultures of microalgae: metabolism and potential products, Water Res., 45 (2011) 11–36.
  11. K. Chojnacka, F.-J. Marquez-Rocha, Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae, Biotechnology, 3 (2004) 21–34.
  12. X. Li, H. Xu, Q. Wu, Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, Biotechnol. Bioeng., 98 (2007) 764–771.
  13. W. Xiong, X. Li, J. Xiang, Q. Wu, High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production, Appl. Microbiol. Biotechnol., 78 (2008) 29–36.
  14. H. Qiao, G. Wang, Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01, Chin. J. Oceanol. Limnol., 27 (2009) 762–768.
  15. Y. Liang, N. Sarkany, Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett., 31 (2009) 1043–1049.
  16. H. Xu, X. Miao, Q. Wu, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., 126 (2006) 499–507.
  17. J. O’Grady, J.A. Morgan, Heterotrophic growth and lipid production of Chlorella protothecoides on glicerol, Bioprocess. Biosyst. Eng., 34 (2011) 121–125.
  18. W.B. Kong, H. Yang, Y.T. Cao, H. Song, S.F. Hua, C.G. Xia, Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture, Food Technol. Biotechnol., 51 (2013) 62–69.
  19. SAG, Sammlung von Algenkulturen der Universität Göttingen, Culture Collection of Algae, Abteilung Experimentelle Phykologie und Sammlung von Algenkulturen (EPSAG), Universität Göttingen, Deutschland, 2007. Available at:
  20. P. Kalayasiri, N. Jayashoke, K. Krisnangkura, Survey of seed oils for use as diesel fuels, J. Am. Oil Chem. Soc., 73 (1996) 471–474.
  21. M.M. Azam, A. Waris, N.M. Nahar, Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India, Biomass Bioenergy, 29 (2005) 293–302.
  22. K. Krisnangkura, A simple method for estimation of cetane index of vegetable oil methyl esters, J. Am. Oil Chem. Soc., 63 (1986) 552–553.
  23. A. Demirbaş, Fuel properties and calculation of higher heating values of vegetable oils, Fuel, 77 (1998) 1117–1120.
  24. Association of Official Analytical Chemists (AOAC), Official Methods of Analysis of the Ass. of Off. Analyt. Chemists Intern., 16th ed., AOAC: Arlington, VA, USA, 1995.
  25. L.J.B. Jones Jr., Plant Nutrition Manual, CRC Press, New York, 1998.
  26. I. Biancarosa, M. Espe, C.G. Bruckner, S. Heesch, N. Liland, R. Waagbø, B. Torstensen, E.J. Lock, Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters, J. Appl. Phycol., 29 (2017) 1001–1009.
  27. C. Ciavatta, M. Govi, L.V. Antisari, P. Sequi, Determination of organic carbon in aqueous extracts of soils and fertilizers, Commun. Soil Sci. Plant Anal., 22 (1991) 795–807.
  28. X. Bian, W. Jin, Q. Gu, X. Zhou, Y. Xi, R. Tu, S. Han, G. Xie, S. Gao, Q. Wang, Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus, World J. Microbiol. Biotechnol., 34 (2018) 39, doi: 10.1007/ s11274-018-2421-z.
  29. K. Stehlik-Barry, A.J. Babinec, Data Analysis with IBM SPSS Statistics, Packt Publishing Ltd., 2017.
  30. M. Mondal, A. Ghosh, O.N. Tiwari, K., Gayen, P. Das, M.K. Mandal, G. Halder, Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes, Energy Convers. Manage., 145 (2017) 247–254.
  31. N. Shrestha, K.K. Dandinpet, M.A. Schneegurt, Effects of nitrogen and phosphorus limitation on lipid accumulation by Chlorella kessleri str. UTEX 263 grown in darkness, J. Appl. Phycol., 32 (2020) 2795–2805.
  32. A. Schönborn, N. Ladommatos, J. Williams, R. Allan, J. Rogerson, The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion, Combust. Flame, 156 (2009) 1396–1412.