References
  -  D. Pradhan, L.B. Sukla, R. Acevedo, Microalgae for future
    biotechnology industries, Inglomayor, 13 (2017) 40–55. 
 
  -  P. Feng, Z. Deng, Z. Hu, L. Fan, Lipid accumulation and growth
    of Chlorella zofingiensis in flat plate photobioreactors outdoors,
    Bioresour. Technol., 102 (2011) 10577–10584. 
 
  -  C.H. Tan, X. Tan, S. Ho, S.S. Lam, P.L. Show, T.H.P. Nguyen,
    Conceptual design of a hybrid thin layer cascade photobioreactor
    for microalgal biodiesel synthesis, Int. J. Energy Res., 44 (2020)
    9757–9771. 
 
  -  S. Azizi, B. Bayat, H. Tayebati, A. Hashemi, F. Pajoum Shariati,
    Nitrate and phosphate removal from treated wastewater by
    Chlorella vulgaris under various light regimes within membrane
    flat plate photobioreactor, Environ. Prog. Sustainable Energy,
    40 (2021) e13519, doi: 10.1002/ep.13519. 
 
  -  X.B. Tan, L. Bin Yang, Y.L. Zhang, F.C. Zhao, H.Q. Chu, J. Guo,
    Chlorella pyrenoidosa cultivation in outdoors using the diluted
    anaerobically digested activated sludge, Bioresour. Technol.,
    198 (2015) 340–350. 
 
  -  L. Moreno-Garcia, K. Adjallé, S. Barnabé, G.S.V. Raghavan,
    Microalgae biomass production for a biorefinery system:
    recent advances and the way towards sustainability, Renewable
    Sustainable Energy Rev., 76 (2017) 493–506. 
 
  -  S. Hindersin, M. Leupold, M. Kerner, D. Hanelt, Key
    parameters for outdoor biomass production of Scenedesmus
    obliquus in solar tracked photobioreactors, J. Appl. Phycol.,
    26 (2014) 2315–2325. 
 
  -  J. Cabello, A. Toledo-Cervantes, L. Sánchez, S. Revah,
    M. Morales, Effect of the temperature, pH and irradiance on
    the photosynthetic activity by Scenedesmus obtusiusculus under
    nitrogen replete and deplete conditions, Bioresour. Technol.,
    181 (2015) 128–135. 
 
  -  C. González-Fernández, A. Mahdy, I. Ballesteros, M. Ballesteros,
    Impact of temperature and photoperiod on anaerobic
    biodegradability of microalgae grown in urban wastewater, Int.
    Biodeterior. Biodegrad., 106 (2016) 16–23. 
 
  -  K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo,
    P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, R. Ruan,
    Microalgae-based wastewater treatment for nutrients recovery:
    a review, Bioresour. Technol., 291 (2019) 121934, doi: 10.1016/j.
    biortech.2019.121934. 
 
  -  S.K. Wang, X. Wang, J. Miao, Y.T. Tian, Tofu whey wastewater
    is a promising basal medium for microalgae culture, Bioresour.
    Technol., 253 (2018) 79–84. 
 
  -  R. Kothari, R. Prasad, V. Kumar, D.P. Singh, Production of
    biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater, Bioresour. Technol.,
    144 (2013) 499–503. 
 
  -  M. Foix-Cablé, R.A. Darmawan, M. Sahnoun, S. Hindersin,
    M. Kerner, M. Kraume, Nutrient recycling from the effluent
    of a decentralized anaerobic membrane bioreactor (AnMBR)
    treating fresh domestic wastewater by cultivation of the
    microalgae Acutodesmus obliquus, Water Sci. Technol., 78 (2018)
    1556–1565. 
 
  -  K. Larsdotter, Wastewater treatment with microalgae – a
    literature review, Vatten, 62 (2006) 31–38. 
 
  -  M.M. Pacheco, M. Hoeltz, T.R. Bjerk, M.P. de Souza,
    L.F.F. da Silva, P.D. Gressler, M.S.A. Moraes, E.A. Lobo,
    
    R.C.S. Schneider, Evaluation of microalgae growth in a mixedtype
    photobioreactor system for the phycoremediation of
    wastewater, J. Chem. Technol. Biotechnol., 94 (2019) 3102–3110.  
  -  B.S.M. Sturm, S.L. Lamer, An energy evaluation of coupling
    nutrient removal from wastewater with algal biomass
    production, Appl. Energy, 88 (2011) 3499–3506. 
 
  -  B. Sialve, N. Bernet, O. Bernard, Anaerobic digestion of
    microalgae as a necessary step to make microalgal biodiesel
    sustainable, Biotechnol. Adv., 27 (2009) 409–416. 
 
  -  L. Brennan, P. Owende, Biofuels from microalgae – a review
    of technologies for production, processing, and extractions of
    biofuels and co-products, Renewable Sustainable Energy Rev.,
    14 (2010) 557–577. 
 
  -  M. Jochum, L.P. Moncayo, Y.-K. Jo, Microalgal cultivation for
    biofertilization in rice plants using a vertical 
    semi-closed airlift
    photobioreactor, PloS One, 13 (2018) e0203456.  
  -  S.M. Abdo, S.A.M. Amer, H.M. Ahmed, R.H. Mahmoud,
    A.A. Salama, M.A.A. Kutkat, Microalgae biomass application
    in commercial broilers nutrition and their efficacy against
    challenge with epidemic newcastle disease virus in Egypt,
    J. World’s Poultry Res., 9 (2019) 98–108. 
 
  -  F. Rezvani, M.-H. Sarrafzadeh, S.-H. Seo, H.-M. Oh, Optimal
    strategies for bioremediation 
    of nitrate-contaminated
    groundwater and microalgae biomass production, Environ.
    Sci. Pollut. Res., 25 (2018) 27471–27482.  
  -  J.B. García-Martínez, N.A. Urbina-Suarez, A. Zuorro,
    A.F. Barajas-Solano, V. Kafarov, Fisheries wastewater as a
    sustainable media for the production of algae-based products,
    Chem. Eng., 76 (2019) 1339–1344. 
 
  -  T.E. Elmansour, L. Mandi, A. Ahmali, A. Elghadraoui, F. Aziz,
    A. Hejjaj, M. Del Bubba, N. Ouazzani, Effect of polyphenols on
    activated sludge biomass during the treatment of highly diluted
    olive mill wastewaters: biomass dynamics and purifying
    performances, Water Sci. Technol., 82 (2020) 1416–1429. 
 
  -  J. Rodier, C. Bazin, J.P. Broutin, P. Chambon, H. Champsaur,
    L. Rodi, Water Analysis, 9th ed., Dunod, Paris, France, 2009,
    p. 1579. 
 
  -  X. Ji, J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, W. Ma, The effect
    of NaCl stress on photosynthetic efficiency and lipid production
    in freshwater microalga—Scenedesmus obliquus XJ002, Sci. Total
    Environ., 633 (2018) 593–599. 
 
  -  L.E. de-Bashan, A. Trejo, V.A.R. Huss, J.-P. Hernandez, Y. Bashan,
    Chlorella sorokiniana UTEX 2805, a heat and intense, sunlighttolerant
    microalga with potential for removing ammonium
    from wastewater, Bioresour. Technol., 99 (2008) 4980–4989. 
 
  -  M. Helamieh, A. Gebhardt, M. Reich, F. Kuhn, M. Kerner,
    K. Kümmerer, Growth and fatty acid composition of Acutodesmus
    obliquus under different light spectra and temperatures,
    Lipids, 56 (2021) 485–498. 
 
  -  N. Osterthun, M. Helamieh, D. Berends, N. Neugebohrn,
    K. Gehrke, M. Vehse, M. Kerner, C. Agert, Influence of spectrally
    selective solar cells on microalgae growth in photo-bioreactors,
    AIP Conf. Proc., 2361 (2021) 070001, doi: 10.1063/5.0054814. 
 
  -  I. Krohn-Molt, B. Wemheuer, M. Alawi, A. Poehlein, S. Güllert,
    C. Schmeisser, A. Pommerening-Röser, 
    A. Grundhoff, R. Daniel,
    D. Hanelt, W.R. Streit, Metagenome survey of a multispecies and
    alga-associated biofilm revealed key elements of bacterial-algal
    interactions in photobioreactors, Appl. Environ. Microbiol.,
    79 (2013) 6196–6206.  
  -  I. Krohn-Molt, M. Alawi, K.U. Förstner, A. Wiegandt,
    L. Burkhardt, D. Indenbirken, M. Thieß, A. Grundhoff,
    
    J. Kehr, A. Tholey, W.R. Streit, Insights into microalga and
    bacteria interactions of selected phycosphere biofilms using
    metagenomic, transcriptomic, and proteomic approaches,
    Front. Microbiol., 8 (2017) 1941, doi:10.3389/fmicb.2017.01941.  
  -  H.A. McManus, L.A. Lewis, Molecular phylogenetic
    relationships in the freshwater family hydrodictyaceae
    (Sphaeropleales, Chlorophycea), with an emphasis on Pediastrum
    Duplex, J. Phycol., 47 (2011) 152–163. 
 
  -  F.A. AlMomani, B. Örmeci, Performance of Chlorella vulgaris,
    Neochloris oleoabundans, and mixed indigenous microalgae for
    treatment of primary effluent, secondary effluent and centrate,
    Ecol. Eng., 95 (2016) 280–289. 
 
  -  E.W. Becker, L.V. Venkataraman, Production and utilization of
    the blue-green alga Spirulina in India, Biomass, 4 (1984) 105–125. 
 
  -  R.A. Soni, K. Sudhakar, R.S. Rana, Comparative study on the
    growth performance of Spirulina platensis on modifying culture
    media, Energy Rep., 5 (2019) 327–336. 
 
  -  A. Sukanya, R. Meena, A.D. Ravindran, Cultivation of Spirulina using low-cost organic medium and preparation of phycocyanin
    based ice creams, Int. J. Curr. Microbiol. Appl. Sci., 9 (2020)
    392–399. 
 
  -  S. Janarthanan, Effect of pH on Arthrospira platensis production,
    Alochana Chakra J., 6 (2020) 2297–2305. 
 
  -  C.E. Quiroz Arita, C. Peebles, T.H. Bradley, Scalability of
    combining microalgae-based biofuels with wastewater facilities:
    a review, Algal Res., 9 (2015) 160–169. 
 
  -  S. Tsujimura, K. Ishikawa, H. Tsukada, Effect of temperature on
    growth of the cyanobacterium Aphanizomenon flos-aquae in Lake
    Biwa and Lake Yogo, Phycol. Res., 49 (2001) 275–280. 
 
  -  V. Üveges, K. Tapolczai, L. Krienitz, J. Padisák, Photosynthetic
    Characteristics and Physiological Plasticity of an Aphanizomenon
    flos-aquae (Cyanobacteria, Nostocaceae) Winter Bloom in a
    Deep Oligo-Mesotrophic Lake (Lake Stechlin, Germany),
    Hydrobiologia, Springer, 2012, pp. 263–272. 
 
  -  A. Włodarczyk, T.T. Selão, B. Norling, P.J. Nixon, Newly
    discovered Synechococcus sp. PCC 11901 is a robust
    cyanobacterial strain for high biomass production, Commun.
    Biol., 3 (2020) 1–14. 
 
  -  S. Abu-Ghosh, Z. Dubinsky, D. Iluz, Acclimation of
    thermotolerant algae to light and temperature interaction1,
    J. Phycol., 56 (2020) 662–670. 
 
  -  G. Kishore, A.D. Kadam, A. Daverey, K. Arunachalam, Isolation
    and evaluation of cultivation conditions of Euglena sp. from
    Western Himalaya for biofuel production, Biofuels, 9 (2018)
    221–228. 
 
	-  Y. Kitaya, H. Azuma, M. Kiyota, Effects of temperature, CO2/O2
    concentrations and light intensity on cellular multiplication
    of microalgae, Euglena gracilis, Adv. Space Res., 35 (2005)
    1584–1588. 
 
  -  Z. Zhang, Y. Tan, W. Wang, W. Bai, J. Fan, J. Huang, M. Wan,
    Y. Li, Efficient heterotrophic cultivation of Chlamydomonas
    reinhardtii, J. Appl. Phycol., 31 (2019) 1545–1554. 
 
  -  B.R. Lopez, O.A. Palacios, Y. Bashan, F.E. Hernández-Sandoval,
    L.E. de-Bashan, Riboflavin and lumichrome exuded by the
    bacterium Azospirillum brasilense promote growth and changes
    in metabolites in Chlorella sorokiniana under autotrophic
    conditions, Algal Res., 44 (2019) 101696, doi: 10.1016/j.
    algal.2019.101696. 
 
  -  J. Zheng, B. Wang, Exploitation of Chlorella pyrenoidosa’s Biomass Energy by Aquiculture Wastewater, International
    Conference on Challenges in Environmental Science and
    Computer Engineering, CESCE 2010, IEEE, 2010, pp. 488–491. 
 
  -  L.V. Richter, C.B. Mansfeldt, M.M. Kuan, A.E. Cesare,
    S.T. Menefee, R.E. Richardson, B.A. Ahner, Altered microbiome
    leads to significant phenotypic and transcriptomic differences
    in a lipid accumulating chlorophyte, Environ. Sci. Technol.,
    52 (2018) 6854–6863. 
 
  -  A. Chan, H. Salsali, E. McBean, Nutrient removal (nitrogen
    and phosphorous) in secondary effluent from a wastewater
    treatment plant by microalgae, Can. J. Civ. Eng., 41 (2014)
    118–124. 
 
  -  S. Huo, J. Liu, M. Addy, P. Chen, D. Necas, P. Cheng, K. Li,
    H. Chai, Y. Liu, R. Ruan, The influence of microalgae on
    vegetable production and nutrient removal in greenhouse
    hydroponics, J. Cleaner Prod., 243 (2020) 118563, doi: 10.1016/j.jclepro.2019.118563. 
 
  -  M. Erkelens, A.S. Ball, D.M. Lewis, The influences of the recycle
    process on the bacterial community in a pilot scale microalgae
    raceway pond, Bioresour. Technol., 157 (2014) 364–367. 
 
  -  F. Goecke, V. Thiel, J. Wiese, A. Labes, J.F. Imhoff, Algae as an
    important environment for bacteria – phylogenetic relationships
    among new bacterial species isolated from algae, Phycologia,
    52 (2013) 14–24. 
 
  -  J.J. Morris, R. Kirkegaard, M.J. Szul, Z.I. Johnson, E.R. Zinser,
    Facilitation of robust growth of Prochlorococcus colonies and
    dilute liquid cultures by “helper” heterotrophic bacteria, Appl.
    Environ. Microbiol., 74 (2008) 4530–4534. 
 
  -  D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra,
    Bioremediation and lipid synthesis through mixotrophic
    algal consortia in municipal wastewater, Bioresour. Technol.,
    168 (2014) 142–150. 
 
  -  D. Singh, L. Nedbal, O. Ebenhöh, Modelling phosphorus
    uptake in microalgae, Biochem. Soc. Trans., 46 (2018)
    483–490. 
 
  -  M. Watanabe, K. Kohata, M. Kunugi, Phosphate accumulation
    and metabolism by Heterosigma akashiwo (Raphidophyceae)
    during diel vertical migration in a stratified microcosm,
    J. Phycol., 24 (1988) 22–28. 
 
  -  S. Van Den Hende, V. Beelen, G. Bore, N. Boon, H. Vervaeren,
    Up-scaling aquaculture wastewater treatment by microalgal
    bacterial flocs: from lab reactors to an outdoor raceway pond,
    Bioresour. Technol., 159 (2014) 342–354. 
 
  -  Z.J. Mudryk, P. Perliński, J. Antonowicz, D. Robak, Number
    of bacteria decomposing organic phosphorus compounds
    and phosphatase activity in the sand of two marine beaches
    differing in the level of anthropopressure, Mar. Pollut. Bull.,
    101 (2015) 566–574. 
 
  -  B.N. Uba, Microbiological characteristics of wastewaters from
    a nitrogen- and phosphate-based fertilizer factory, Bioresour.
    Technol., 51 (1995) 143–152. 
 
  -  G.W. Fuhs, M. Chen, Microbiological basis of phosphate
    removal in the activated sludge process for the treatment of
    wastewater, Microb. Ecol., 2 (1975) 119–138. 
 
  -  G. Gutzeit, D. Lorch, A. Weber, M. Engels, U. Neis, Bioflocculent
    algal-bacterial biomass improves low-cost wastewater
    treatment, Water Sci. Technol., 52 (2005) 9–18. 
 
  -  N.D. Manser, M. Wang, S.J. Ergas, J.R. Mihelcic, A. Mulder,
    J. Van De Vossenberg, J.B. Van Lier, P. Van Der Steen, Biological
    nitrogen removal in a photosequencing batch reactor with
    an algal-nitrifying bacterial consortium and anammox
    granules, Environ. Sci. Technol. Lett., 3 (2016) 175–179. 
 
  -  H. Peng, L.E. de-Bashan, B.T. Higgins, Comparison of
    algae growth and symbiotic mechanisms in the presence
    of plant growth promoting bacteria and non-plant growth
    promoting bacteria, Algal Res., 53 (2021) 102156, doi: 10.1016/j.
    algal.2020.102156. 
 
  -  J.R. Yang, Y. Wang, H. Chen, Y.K. Lyu, Ammonium removal
    characteristics of an acid-resistant bacterium Acinetobacter sp.
    JR1 from pharmaceutical wastewater capable of heterotrophic
    nitrification-aerobic denitrification, Bioresour. Technol.,
    274 (2019) 56–64. 
 
  -  F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins,
    T.J. Gibson, Multiple sequence alignment with Clustal X,
    Trends Biochem. Sci., 23 (1998) 403–405. 
 
  -  K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular
    evolutionary genetics analysis (MEGA) software version 4.0,
    Mol. Biol. Evol., 24 (2007) 1596–1599. 
 
  -  N. Essoussi, K. Boujenfa, M. Limam, A comparison of MSA
    tools, Bioinformation, 2 (2008) 452–455. 
 
  -  T. Li, Y. Zheng, L. Yu, S. Chen, High productivity cultivation
    of a heat-resistant microalga Chlorella sorokiniana for biofuel
    production, Bioresour. Technol., 131 (2013) 60–67. 
 
  -  P. Varshney, J. Beardall, S. Bhattacharya, P.P. Wangikar, Isolation
    and biochemical characterisation of two thermophilic green
    algal species-Asterarcys quadricellulare and Chlorella sorokiniana,
    which are tolerant to high levels of carbon dioxide and nitric
    oxide, Algal Res., 30 (2018) 28–37. 
 
  -  S. Suthar, R. Verma, Production of Chlorella vulgaris under
    varying nutrient and abiotic conditions: a potential microalga
    for bioenergy feedstock, Process Saf. Environ. Prot., 113 (2018)
    141–148. 
 
  -  B. Ievina, F. Romagnoli, Potential of Chlorella species as
    feedstock for bioenergy production: a review, Environ. Clim.
    Technol., 24 (2020) 203–220. 
 
  -  P.M. Slegers, M.B. Lösing, R.H. Wijffels, G. van Straten,
    A.J.B. van Boxtel, Scenario evaluation of open pond microalgae
    production, Algal Res., 2 (2013) 358–368. 
 
  -  P. Dechatiwongse, S. Srisamai, G. Maitland, K. Hellgardt, Effects
    of light and temperature on the photoautotrophic growth and
    photoinhibition of nitrogen-fixing cyanobacterium Cyanothece sp. ATCC 51142, Algal Res., 5 (2014) 103–111. 
 
  -  P. Varshney, P. Mikulic, A. Vonshak, J. Beardall, P.P. Wangikar,
    Extremophilic micro-algae and their potential contribution
    in biotechnology, Bioresour. Technol., 184 (2015) 363–372. 
 
  -  E. Lee, M. Jalalizadeh, Q. Zhang, Growth kinetic models for
    microalgae cultivation: a review, Algal Res., 12 (2015) 497–512.