1. D. Pradhan, L.B. Sukla, R. Acevedo, Microalgae for future biotechnology industries, Inglomayor, 13 (2017) 40–55.
  2. P. Feng, Z. Deng, Z. Hu, L. Fan, Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors, Bioresour. Technol., 102 (2011) 10577–10584.
  3. C.H. Tan, X. Tan, S. Ho, S.S. Lam, P.L. Show, T.H.P. Nguyen, Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis, Int. J. Energy Res., 44 (2020) 9757–9771.
  4. S. Azizi, B. Bayat, H. Tayebati, A. Hashemi, F. Pajoum Shariati, Nitrate and phosphate removal from treated wastewater by Chlorella vulgaris under various light regimes within membrane flat plate photobioreactor, Environ. Prog. Sustainable Energy, 40 (2021) e13519, doi: 10.1002/ep.13519.
  5. X.B. Tan, L. Bin Yang, Y.L. Zhang, F.C. Zhao, H.Q. Chu, J. Guo, Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge, Bioresour. Technol., 198 (2015) 340–350.
  6. L. Moreno-Garcia, K. Adjallé, S. Barnabé, G.S.V. Raghavan, Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability, Renewable Sustainable Energy Rev., 76 (2017) 493–506.
  7. S. Hindersin, M. Leupold, M. Kerner, D. Hanelt, Key parameters for outdoor biomass production of Scenedesmus obliquus in solar tracked photobioreactors, J. Appl. Phycol., 26 (2014) 2315–2325.
  8. J. Cabello, A. Toledo-Cervantes, L. Sánchez, S. Revah, M. Morales, Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions, Bioresour. Technol., 181 (2015) 128–135.
  9. C. González-Fernández, A. Mahdy, I. Ballesteros, M. Ballesteros, Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater, Int. Biodeterior. Biodegrad., 106 (2016) 16–23.
  10. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, R. Ruan, Microalgae-based wastewater treatment for nutrients recovery: a review, Bioresour. Technol., 291 (2019) 121934, doi: 10.1016/j. biortech.2019.121934.
  11. S.K. Wang, X. Wang, J. Miao, Y.T. Tian, Tofu whey wastewater is a promising basal medium for microalgae culture, Bioresour. Technol., 253 (2018) 79–84.
  12. R. Kothari, R. Prasad, V. Kumar, D.P. Singh, Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater, Bioresour. Technol., 144 (2013) 499–503.
  13. M. Foix-Cablé, R.A. Darmawan, M. Sahnoun, S. Hindersin, M. Kerner, M. Kraume, Nutrient recycling from the effluent of a decentralized anaerobic membrane bioreactor (AnMBR) treating fresh domestic wastewater by cultivation of the microalgae Acutodesmus obliquus, Water Sci. Technol., 78 (2018) 1556–1565.
  14. K. Larsdotter, Wastewater treatment with microalgae – a literature review, Vatten, 62 (2006) 31–38.
  15. M.M. Pacheco, M. Hoeltz, T.R. Bjerk, M.P. de Souza, L.F.F. da Silva, P.D. Gressler, M.S.A. Moraes, E.A. Lobo,
    R.C.S. Schneider, Evaluation of microalgae growth in a mixedtype photobioreactor system for the phycoremediation of wastewater, J. Chem. Technol. Biotechnol., 94 (2019) 3102–3110.
  16. B.S.M. Sturm, S.L. Lamer, An energy evaluation of coupling nutrient removal from wastewater with algal biomass production, Appl. Energy, 88 (2011) 3499–3506.
  17. B. Sialve, N. Bernet, O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnol. Adv., 27 (2009) 409–416.
  18. L. Brennan, P. Owende, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 14 (2010) 557–577.
  19. M. Jochum, L.P. Moncayo, Y.-K. Jo, Microalgal cultivation for biofertilization in rice plants using a vertical
    semi-closed airlift photobioreactor, PloS One, 13 (2018) e0203456.
  20. S.M. Abdo, S.A.M. Amer, H.M. Ahmed, R.H. Mahmoud, A.A. Salama, M.A.A. Kutkat, Microalgae biomass application in commercial broilers nutrition and their efficacy against challenge with epidemic newcastle disease virus in Egypt, J. World’s Poultry Res., 9 (2019) 98–108.
  21. F. Rezvani, M.-H. Sarrafzadeh, S.-H. Seo, H.-M. Oh, Optimal strategies for bioremediation
    of nitrate-contaminated groundwater and microalgae biomass production, Environ. Sci. Pollut. Res., 25 (2018) 27471–27482.
  22. J.B. García-Martínez, N.A. Urbina-Suarez, A. Zuorro, A.F. Barajas-Solano, V. Kafarov, Fisheries wastewater as a sustainable media for the production of algae-based products, Chem. Eng., 76 (2019) 1339–1344.
  23. T.E. Elmansour, L. Mandi, A. Ahmali, A. Elghadraoui, F. Aziz, A. Hejjaj, M. Del Bubba, N. Ouazzani, Effect of polyphenols on activated sludge biomass during the treatment of highly diluted olive mill wastewaters: biomass dynamics and purifying performances, Water Sci. Technol., 82 (2020) 1416–1429.
  24. J. Rodier, C. Bazin, J.P. Broutin, P. Chambon, H. Champsaur, L. Rodi, Water Analysis, 9th ed., Dunod, Paris, France, 2009, p. 1579.
  25. X. Ji, J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, W. Ma, The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002, Sci. Total Environ., 633 (2018) 593–599.
  26. L.E. de-Bashan, A. Trejo, V.A.R. Huss, J.-P. Hernandez, Y. Bashan, Chlorella sorokiniana UTEX 2805, a heat and intense, sunlighttolerant microalga with potential for removing ammonium from wastewater, Bioresour. Technol., 99 (2008) 4980–4989.
  27. M. Helamieh, A. Gebhardt, M. Reich, F. Kuhn, M. Kerner, K. Kümmerer, Growth and fatty acid composition of Acutodesmus obliquus under different light spectra and temperatures, Lipids, 56 (2021) 485–498.
  28. N. Osterthun, M. Helamieh, D. Berends, N. Neugebohrn, K. Gehrke, M. Vehse, M. Kerner, C. Agert, Influence of spectrally selective solar cells on microalgae growth in photo-bioreactors, AIP Conf. Proc., 2361 (2021) 070001, doi: 10.1063/5.0054814.
  29. I. Krohn-Molt, B. Wemheuer, M. Alawi, A. Poehlein, S. Güllert, C. Schmeisser, A. Pommerening-Röser,
    A. Grundhoff, R. Daniel, D. Hanelt, W.R. Streit, Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors, Appl. Environ. Microbiol., 79 (2013) 6196–6206.
  30. I. Krohn-Molt, M. Alawi, K.U. Förstner, A. Wiegandt, L. Burkhardt, D. Indenbirken, M. Thieß, A. Grundhoff,
    J. Kehr, A. Tholey, W.R. Streit, Insights into microalga and bacteria interactions of selected phycosphere biofilms using metagenomic, transcriptomic, and proteomic approaches, Front. Microbiol., 8 (2017) 1941, doi:10.3389/fmicb.2017.01941.
  31. H.A. McManus, L.A. Lewis, Molecular phylogenetic relationships in the freshwater family hydrodictyaceae (Sphaeropleales, Chlorophycea), with an emphasis on Pediastrum Duplex, J. Phycol., 47 (2011) 152–163.
  32. F.A. AlMomani, B. Örmeci, Performance of Chlorella vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate, Ecol. Eng., 95 (2016) 280–289.
  33. E.W. Becker, L.V. Venkataraman, Production and utilization of the blue-green alga Spirulina in India, Biomass, 4 (1984) 105–125.
  34. R.A. Soni, K. Sudhakar, R.S. Rana, Comparative study on the growth performance of Spirulina platensis on modifying culture media, Energy Rep., 5 (2019) 327–336.
  35. A. Sukanya, R. Meena, A.D. Ravindran, Cultivation of Spirulina using low-cost organic medium and preparation of phycocyanin based ice creams, Int. J. Curr. Microbiol. Appl. Sci., 9 (2020) 392–399.
  36. S. Janarthanan, Effect of pH on Arthrospira platensis production, Alochana Chakra J., 6 (2020) 2297–2305.
  37. C.E. Quiroz Arita, C. Peebles, T.H. Bradley, Scalability of combining microalgae-based biofuels with wastewater facilities: a review, Algal Res., 9 (2015) 160–169.
  38. S. Tsujimura, K. Ishikawa, H. Tsukada, Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo, Phycol. Res., 49 (2001) 275–280.
  39. V. Üveges, K. Tapolczai, L. Krienitz, J. Padisák, Photosynthetic Characteristics and Physiological Plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) Winter Bloom in a Deep Oligo-Mesotrophic Lake (Lake Stechlin, Germany), Hydrobiologia, Springer, 2012, pp. 263–272.
  40. A. Włodarczyk, T.T. Selão, B. Norling, P.J. Nixon, Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production, Commun. Biol., 3 (2020) 1–14.
  41. S. Abu-Ghosh, Z. Dubinsky, D. Iluz, Acclimation of thermotolerant algae to light and temperature interaction1, J. Phycol., 56 (2020) 662–670.
  42. G. Kishore, A.D. Kadam, A. Daverey, K. Arunachalam, Isolation and evaluation of cultivation conditions of Euglena sp. from Western Himalaya for biofuel production, Biofuels, 9 (2018) 221–228.
  43. Y. Kitaya, H. Azuma, M. Kiyota, Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis, Adv. Space Res., 35 (2005) 1584–1588.
  44. Z. Zhang, Y. Tan, W. Wang, W. Bai, J. Fan, J. Huang, M. Wan, Y. Li, Efficient heterotrophic cultivation of Chlamydomonas reinhardtii, J. Appl. Phycol., 31 (2019) 1545–1554.
  45. B.R. Lopez, O.A. Palacios, Y. Bashan, F.E. Hernández-Sandoval, L.E. de-Bashan, Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions, Algal Res., 44 (2019) 101696, doi: 10.1016/j. algal.2019.101696.
  46. J. Zheng, B. Wang, Exploitation of Chlorella pyrenoidosa’s Biomass Energy by Aquiculture Wastewater, International Conference on Challenges in Environmental Science and Computer Engineering, CESCE 2010, IEEE, 2010, pp. 488–491.
  47. L.V. Richter, C.B. Mansfeldt, M.M. Kuan, A.E. Cesare, S.T. Menefee, R.E. Richardson, B.A. Ahner, Altered microbiome leads to significant phenotypic and transcriptomic differences in a lipid accumulating chlorophyte, Environ. Sci. Technol., 52 (2018) 6854–6863.
  48. A. Chan, H. Salsali, E. McBean, Nutrient removal (nitrogen and phosphorous) in secondary effluent from a wastewater treatment plant by microalgae, Can. J. Civ. Eng., 41 (2014) 118–124.
  49. S. Huo, J. Liu, M. Addy, P. Chen, D. Necas, P. Cheng, K. Li, H. Chai, Y. Liu, R. Ruan, The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics, J. Cleaner Prod., 243 (2020) 118563, doi: 10.1016/j.jclepro.2019.118563.
  50. M. Erkelens, A.S. Ball, D.M. Lewis, The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond, Bioresour. Technol., 157 (2014) 364–367.
  51. F. Goecke, V. Thiel, J. Wiese, A. Labes, J.F. Imhoff, Algae as an important environment for bacteria – phylogenetic relationships among new bacterial species isolated from algae, Phycologia, 52 (2013) 14–24.
  52. J.J. Morris, R. Kirkegaard, M.J. Szul, Z.I. Johnson, E.R. Zinser, Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria, Appl. Environ. Microbiol., 74 (2008) 4530–4534.
  53. D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra, Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater, Bioresour. Technol., 168 (2014) 142–150.
  54. D. Singh, L. Nedbal, O. Ebenhöh, Modelling phosphorus uptake in microalgae, Biochem. Soc. Trans., 46 (2018) 483–490.
  55. M. Watanabe, K. Kohata, M. Kunugi, Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm, J. Phycol., 24 (1988) 22–28.
  56. S. Van Den Hende, V. Beelen, G. Bore, N. Boon, H. Vervaeren, Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond, Bioresour. Technol., 159 (2014) 342–354.
  57. Z.J. Mudryk, P. Perliński, J. Antonowicz, D. Robak, Number of bacteria decomposing organic phosphorus compounds and phosphatase activity in the sand of two marine beaches differing in the level of anthropopressure, Mar. Pollut. Bull., 101 (2015) 566–574.
  58. B.N. Uba, Microbiological characteristics of wastewaters from a nitrogen- and phosphate-based fertilizer factory, Bioresour. Technol., 51 (1995) 143–152.
  59. G.W. Fuhs, M. Chen, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol., 2 (1975) 119–138.
  60. G. Gutzeit, D. Lorch, A. Weber, M. Engels, U. Neis, Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment, Water Sci. Technol., 52 (2005) 9–18.
  61. N.D. Manser, M. Wang, S.J. Ergas, J.R. Mihelcic, A. Mulder, J. Van De Vossenberg, J.B. Van Lier, P. Van Der Steen, Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules, Environ. Sci. Technol. Lett., 3 (2016) 175–179.
  62. H. Peng, L.E. de-Bashan, B.T. Higgins, Comparison of algae growth and symbiotic mechanisms in the presence of plant growth promoting bacteria and non-plant growth promoting bacteria, Algal Res., 53 (2021) 102156, doi: 10.1016/j. algal.2020.102156.
  63. J.R. Yang, Y. Wang, H. Chen, Y.K. Lyu, Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification, Bioresour. Technol., 274 (2019) 56–64.
  64. F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, T.J. Gibson, Multiple sequence alignment with Clustal X, Trends Biochem. Sci., 23 (1998) 403–405.
  65. K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24 (2007) 1596–1599.
  66. N. Essoussi, K. Boujenfa, M. Limam, A comparison of MSA tools, Bioinformation, 2 (2008) 452–455.
  67. T. Li, Y. Zheng, L. Yu, S. Chen, High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production, Bioresour. Technol., 131 (2013) 60–67.
  68. P. Varshney, J. Beardall, S. Bhattacharya, P.P. Wangikar, Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide, Algal Res., 30 (2018) 28–37.
  69. S. Suthar, R. Verma, Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock, Process Saf. Environ. Prot., 113 (2018) 141–148.
  70. B. Ievina, F. Romagnoli, Potential of Chlorella species as feedstock for bioenergy production: a review, Environ. Clim. Technol., 24 (2020) 203–220.
  71. P.M. Slegers, M.B. Lösing, R.H. Wijffels, G. van Straten, A.J.B. van Boxtel, Scenario evaluation of open pond microalgae production, Algal Res., 2 (2013) 358–368.
  72. P. Dechatiwongse, S. Srisamai, G. Maitland, K. Hellgardt, Effects of light and temperature on the photoautotrophic growth and photoinhibition of nitrogen-fixing cyanobacterium Cyanothece sp. ATCC 51142, Algal Res., 5 (2014) 103–111.
  73. P. Varshney, P. Mikulic, A. Vonshak, J. Beardall, P.P. Wangikar, Extremophilic micro-algae and their potential contribution in biotechnology, Bioresour. Technol., 184 (2015) 363–372.
  74. E. Lee, M. Jalalizadeh, Q. Zhang, Growth kinetic models for microalgae cultivation: a review, Algal Res., 12 (2015) 497–512.