References

  1. J.K. Edzwald, J. Haarhoff, Dissolved Air Flotation for Water Clarification, McGraw-Hill Companies: American Water Works Association, North America, 2011.
  2. Krofta, Proven Solutions in Liquid-Solid Separation, Krofta® Dissolved Air Flotation, Krofta a Waterleau Company, Dalton, MA 01227, USA, 2015.
  3. R. Miranda, I. Latour, A. Blanco, Understanding the efficiency of aluminum coagulants used in dissolved air flotation (DAF), Front. Chem., 8 (2020), doi: 10.3389/fchem.2020.00027.
  4. L.K. Wang, N.K. Shammas, W.A. Selke, D.B. Aulenbach, Eds., Flotation Technology, Handbook of Environmental Engineering, Humana Press, Spring Street, New York, NY 10013, USA, Vol. 12, 2010.
  5. Rangin Kaghaz-e-Khazar, Co., The Operational Records for One Decade in Paper-Recycling Mill in Northern of Iran, Rangin Kaghaz-e-Khazar, Rajeh Industrial Town, Iran, 2020.
  6. A. Hasannattaj Jelodar, H. Amini Rad, S.M. Borghei, M. Vossoughi, R. Rouhollahi, Particle removal optimization in rotating dissolved air flotation used in paper-recycling wastewater treatment, Water Environ. J., 36 (2022) 3–17.
  7. H.A. Oliveira, A.C. Azevedo, R. Etchepare, J. Rubio, Separation of emulsified crude oil in saline water by flotation with microand nanobubbles generated by a multiphase pump, Water Sci. Technol., 76 (2017) 2710–2718.
  8. Z. Amjad, The Science and Technology of Industrial Water Treatment, Taylor and Francis Group, IWA Publishing, London SW1H 0QS, UK, 2010.
  9. M.M. Benjamin, D.F. Lawler, Water Quality Engineering: Physical/Chemical Treatment Processes,
    John Wiley & Sons, Inc., Hoboken, New Jersey, 2013.
  10. G.Z. Kyzas, K.A. Matis, Flotation in water and wastewater treatment, Processes, 6 (2018) 116, doi:10.3390/pr6080116.
  11. A. Chen., Z. Wang., J. Yang, Influence of bubble size on the fluid dynamic behavior of a DAF tank: a 3D numerical investigation, Colloids Surf., A, 495 (2016) 200–207.
  12. A. Bahadori, G. Zahedi, S. Zendehboudi, M. Bahadori, Estimation of air concentration in dissolved air flotation (DAF) systems using a simple predictive tool, Chem. Eng. Res. Des., 91 (2013) 184–190.
  13. J. Behin, S. Bahrami, Modeling an industrial dissolved air flotation tank used for separating oil from wastewater, Chem. Eng. Process. Process Intensif., 59 (2012) 1–8.
  14. M. Han, T. Kim, D. Kwak, Measurement of bubble bed depth in dissolved air flotation using a particle counter, J. Water Supply Res. Technol. AQUA, 58 (2009) 57–63.
  15. S.A. Hussain, A. Idris, Spiral motion of air bubbles in multiphase mixing for wastewater treatment, Procedia Eng., 148 (2016) 1034–1042.
  16. S. Li, K. Jue, C. Sun, Effect of bubble surface properties on bubble–particle collision efficiency in froth flotation, Minerals, 10 (2020) 367, doi: 10.3390/min10040367.
  17. S. Li, M. Philip Schwarz, Y. Feng, P. Witt, C. Sun, A CFD study of particle–bubble collision efficiency in froth flotation, Miner. Eng., 141 (2019) 105855, doi: 10.1016/j.mineng.2019.105855.
  18. M. Bondelind, S. Sasic, M. Kostoglou, L. Bergdahl, T.J.R. Pettersson, Single- and two-phase numerical models of dissolved air flotation: comparison of 2D and 3D simulations, Colloids Surf., A, 365 (2010) 137–144.
  19. J. Bridgeman, B. Jefferson, S.A. Parsons, Computational fluid dynamics modelling of flocculation in water treatment: a review, Eng. Appl. Comput. Fluid Mech., 3 (2009) 220–241.
  20. R. Bürger, S. Diehl, C. Martí, Y. Vásquez, Simulation and control of dissolved air flotation and column froth flotation with simultaneous sedimentation, Water Sci. Technol., 81 (2020) 1723–1732.
  21. K. Satpathy, U. Rehman, B. Cools, L. Verdickt, G. Peleman, I. Nopens, CFD-based process optimization of a dissolved air flotation system for drinking water production, Water Sci. Technol., 81 (2020) 1668–1681.
  22. V.A. Emmanouil, T.D. Karapantsios, K.A. Matis, Two and threephase simulations of an ill-functioning dissolved air flotation tank, Int. J. Environ. Waste Manage., 8 (2011) 215–228.
  23. V. Emmanouil, E.P. Skaperdas, T.D. Karapantsios, K.A. Matis, Two-phase simulations of an off-nominally operating dissolvedair flotation tank, Int. J. Environ. Pollut., 30 (2007) 213–230.
  24. Y.L. Wang, N. Wang, R. Jia, K. Zhang, B. Liu, W. Song, J. Jia, Research on CFD numerical simulation and flow field characteristics of countercurrent–cocurrent dissolved air flotation, Water Sci. Technol., 77 (2018) 1280–1292.
  25. Y. Wang, X. Jin, S. Yang, G. Wang, L. Xu, P. Jin, X. Shi, Y. Shi, Interactions between flocs and bubbles in the separation zone of dissolved air flotation system, Sci. Total Environ., 761 (2021) 143222.
  26. F. Bloom, T.J. Heindel, Modeling flotation separation in a semibatch process, Chem. Eng. Sci., 58 (2003) 353–365.
  27. B. Deng, Q. Ding, D. Ge, Three dimensional Eulerian-Eulerian simulation on hydrodynamics in dissolved air flotation tank with different turbulence models, Water Sci. Technol., 76 (2017) 425–433.
  28. M. Bondelind, S. Sasic, L. Bergdahl, A model to estimate the size of aggregates formed in a dissolved air flotation unit, Appl. Math. Modell., 37 (2013) 3036–3047.
  29. H. Ström, M. Bondelind, S. Sasic, A novel hybrid scheme for making feasible numerical investigations of industrial threephase flows with aggregation, Ind. Eng. Chem. Res., 52 (2013) 10022−10027.
  30. D.-H. Kwak, M.-S. Kim, Estimation and evaluation of autoflocculated algae harvesting efficiency using the population balance in turbulence model in flotation process, Water Sci. Technol., 77 (2018) 1165–1178.
  31. F. Julien Saint Amand, Hydrodynamics of deinking flotation, Int. J. Miner. Process, 56 (1999) 277–316.
  32. F. Bloom, T.J. Heindel, On the structure of collision and detachment frequencies in flotation models, Chem. Eng. Sci., 57 (2002) 2467–2473.
  33. R.B. Moruzzi, M.A.P. Reali, The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model, Bioprocess Biosyst. Eng., 37 (2014) 2445–2452, doi: 10.1007/s00449-014-1221-6.
  34. V.R. Fanaie, M. Khiadani, Effect of salinity on air dissolution, size distribution of microbubbles, and hydrodynamics of a dissolved air flotation (DAF) system, Colloids Surf., A, 591 (2020) 124547, doi:10.1016/j.colsurfa.2020.124547.
  35. B. Shahbazi, B. Rezai, The effect of micro turbulence on quartz flotation rate, Iran. J. Chem. Chem. Eng., 34 (2015) 79–89.
  36. T.Y. Liu, P.T.L. Koh, M.P. Schwarz, CFD-Based Modelling of Bubble-Particle Collision Efficiency with Mobile Bubble Surface in a Turbulent Environment, Fifth International Conference on CFD in the Process Industries, CSIRO Minerals, Melbourne, Australia, 2006.
  37. M. Kostoglou, T.D. Karapantsios, K.A. Matis, Modeling local flotation frequency in a turbulent flow field, Adv. Colloid Interface Sci., 122 (2006) 79–91.
  38. M. Kostoglou, T.D. Karapantsios, K.A. Matis, CFD model for the design of large scale flotation tanks for water and wastewater treatment, Ind. Eng. Chem. Res., 46 (2007) 6590–6599.
  39. B. Lakghomi, Y. Lawryshyn, R. Hofmann, Importance of flow stratification and bubble aggregation in the separation zone of a dissolved air flotation tank, Water Res., 46 (2012) 4468–4476.
  40. B. Lakghomi, Y. Lawryshyn, R. Hofmann, A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size, Water Res., 68 (2015) 262–272.
  41. B. Lakghomi, Y. Lawryshyn, R. Hofmann, Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements, Water Sci. Technol., 72 (2015) 1111–1118.
  42. Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, USA, 2017.
  43. J.K. Edzwald, Dissolved air flotation and me, Water Res., 44 (2011) 2077–2106.
  44. E. Antunes, F.A.P. Garcia, P. Ferreira, A. Blanco, C. Negro, M.G. Rasteiro, Modelling PCC flocculation by bridging mechanism using population balances: effect of polymer characteristics on flocculation, Chem. Eng. Sci., 65 (2010) 3798–3807.
  45. G. Heng Yeoh, C.P. Cheung, J. Tu, Multiphase Flow Analysis Using Population Balance Modeling Bubbles, Drops and Particles, Elsevier Ltd., 2014.
  46. M. Ahsan, Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment, Beni-Suef Univ. J. Basic Appl. Sci., 3 (2014) 269–277.
  47. ANSYS, ANSYS CFX-Solver Modeling Guide, ANSYS Inc., U.S.A., 2017.