References

  1. Y. Zhang, J. Shi, Z. Xu, Y. Chen, D. Song, Degradation of tetracycline in a schorl/H2O2 system: proposed mechanism and intermediates, Chemosphere, 202 (2018) 661–668.
  2. H. Wang, T. Chen, D. Chen, X. Zou, M. Li, F. Huang, F. Sun, C. Wang, D. Shu, H. Liu, Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation, Appl. Catal., B, 260 (2020) 118203, doi: 10.1016/j. apcatb.2019.118203.
  3. J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, L. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism, Chem. Eng. J., 364 (2019) 45–56.
  4. C.-H. Han, H.-D. Park, S.-B. Kim, V. Yargeau, J.-W. Choi, S.-H. Lee, J.-A. Park, Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: their transformation products and toxicity assessment, Water Res., 172 (2020) 115514, doi: 10.1016/j. watres.2020.115514.
  5. K.H. Wammer, M.T. Slattery, A.M. Stemig, J.L. Ditty, Tetracycline photolysis in natural waters: loss of antibacterial activity, Chemosphere, 85 (2011) 1505–1510.
  6. L. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  7. V. Maroga Mboula, V. Héquet, Y. Gru, R. Colin, Y. Andrès, Assessment of the efficiency of photocatalysis on tetracycline biodegradation, J. Hazard. Mater., 209 (2012) 355–364.
  8. L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.
  9. J. Wang L. Chu, Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview, Radiat. Phys. Chem., 125 (2016) 56–64.
  10. B. Halling-Sørensen, G. Sengeløv, J. Tjørnelund, Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria, Arch. Environ. Contam. Toxicol., 42 (2002) 263–271.
  11. A.L. Batt, S. Kim, D.S. Aga, Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations, Chemosphere, 68 (2007) 428–435.
  12. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technol., 36 (2006) 1–84.
  13. H.J. Lee, H. Lee, C. Lee, Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photoassisted Fenton-like systems, Chem. Eng. J., 245 (2014) 258–264.
  14. J. Wang, Z. Bai, Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chem. Eng. J., 312 (2017) 79–98.
  15. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment–a critical review, Water Res., 139 (2018) 118–131.
  16. T. Turan-Ertas, M.D. Gurol, Oxidation of diethylene glycol with ozone and modified Fenton processes, Chemosphere, 47 (2002) 293–301.
  17. J.A. Khan, X. He, N.S. Shah, H.M. Khan, E. Hapeshi, D. Fatta-Kassinos, D.D. Dionysiou, Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5, Chem. Eng. J., 252 (2014) 393–403.
  18. S.P. Sun, H.Q. Guo, Q. Ke, J.H. Sun, S.H. Shi, M.L. Zhang, Q. Zhou, Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process, Environ. Eng. Sci., 26 (2009) 753–759.
  19. M. Munoz, Z.M. De Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation–a review, Appl. Catal., B, 176 (2015) 249–265.
  20. J. De Laat, G.T. Le, B. Legube, A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2, Chemosphere, 55 (2004) 715–723.
  21. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  22. J. Wang, S. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants, Chem. Eng. J., 411 (2021) 128392, doi: 10.1016/j. cej.2020.128392.
  23. J.J. Pignatello, Dark and photoassisted iron3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol., 26 (1992) 944–951.
  24. M.C. Lu, J.N. Chen, C.P. Chang, Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton’s reagent, Chemosphere, 35 (1997) 2285–2293.
  25. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes, Desalination, 211 (2007) 72–86.
  26. L.G. Devi, C. Munikrishnappa, B. Nagaraj, K.E. Rajashekhar, Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S, J. Mol. Catal. A: Chem., 374 (2013) 125–131.
  27. N.S. Shah, J.A. Khan, S. Nawaz, H.M. Khan, Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation, J. Hazard. Mater., 278 (2014) 40–48.
  28. E.O. Marson, V.A. de Paiva, B.R. Gonçalves, O.G. Júnior, W.B. Neto, A.E. Machado, A.G. Trovó, Degradation of Direct Red 81 mediated by Fenton reactions: multivariate optimization, effect of chloride and sulfate, and acute ecotoxicity assessment, Environ. Sci. Pollut. Res., 24 (2017) 6176–6186.
  29. I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects, J. Photochem. Photobiol., A, 187 (2007) 33–39.
  30. Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos, D.D. Dionysiou, Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: kinetics and mechanism, Water Res., 95 (2016) 195–204.
  31. H. Liu, X. Zhu, X. Zhang, Z. Wang, B. Sun, Photodegradation of oxytetracycline in the presence of dissolved organic matter and chloride ions: importance of reactive chlorine species, Water Air Soil Pollut., 230 (2019) 1–10.
  32. J. De Laat, T.G. Le, Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal., B, 66 (2006) 137–146.
  33. Y. Yu, Y. Ji, J. Lu, X. Yin, Q. Zhou, Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation, Chem. Eng. J., 406 (2021) 126759, doi: 10.1016/j.cej.2020.126759.
  34. G.D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.M. Zhou, Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics, J. Hazard. Mater., 227 (2012) 394–401.
  35. J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems, J. Environ. Manage., 156 (2015) 266–275.
  36. F. Ali, J.A. Khan, N.S. Shah, M. Sayed, H.M. Khan, Carbamazepine degradation by UV and UV-assisted AOPs: kinetics, mechanism and toxicity investigations, Process Saf. Environ. Prot., 117 (2018) 307–314.
  37. M. Kwon, Y. Yoon, S. Kim, Y. Jung, T.M. Hwang, J.W. Kang, Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: a comparative evaluation of 275 nm LED-UV and 254 nm LP-UV, Sci. Total Environ., 637 (2018) 1351–1357.
  38. H. Lebik-Elhadi, Z. Frontistis, H. Ait-Amar, F. Madjene, D. Mantzavinos, Degradation of pesticide thiamethoxam by heat – activated and ultrasound – activated persulfate: effect of key operating parameters and the water matrix, Process Saf. Environ. Prot., 134 (2020) 197–207.
  39. R. Yuan, S.N. Ramjaun, Z. Wang, J. Liu, Concentration profiles of chlorine radicals and their significances
    in OH-induced dye degradation: kinetic modeling and reaction pathways, Chem. Eng. J., 209 (2012) 38–45.
  40. A. Eslami, F. Mehdipour, K.-Y.A. Lin, H.S. Maleksari, F. Mirzaei, F. Ghanbari, Sono-photo activation of percarbonate for the degradation of organic dye: the effect of water matrix and identification of by-products, J. Water Process Eng., 33 (2020) 100998, doi: 10.1016/j.jwpe.2019.100998.
  41. S.S. da Silva, O. Chiavone-Filho, E.L. de Barros Neto, E.L. Foletto, A.L.N. Mota, Effect of inorganic salt mixtures on phenol mineralization by photo-Fenton-analysis via an experimental design, Water Air Soil Pollut., 225 (2014) 1–10.
  42. J.A. Khan, N.S. Shah, H.M. Khan, Decomposition of atrazine by ionizing radiation: kinetics, degradation pathways and influence of radical scavengers, Sep. Purif. Technol., 156 (2015) 140–147.
  43. R. Zhuan, J. Wang, Degradation of sulfamethoxazole by ionizing radiation: kinetics and implications of additives, Sci. Total Environ., 668 (2019) 67–73.
  44. Z. Yan, Y. Gu, X. Wang, Y. Hu, X. Li, Degradation of aniline by ferrous ions activated persulfate: impacts, mechanisms, and by-products, Chemosphere, 268 (2021) 129237, doi: 10.1016/j.chemosphere.2020.129237.
  45. J. Ma, Y. Ding, L. Chi, X. Yang, Y. Zhong, Z. Wang, Q. Shi, Degradation of benzotriazole by sulfate radical-based advanced oxidation process, Environ. Technol., 42 (2021) 238–247.
  46. J. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen, Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water, Chemosphere, 190 (2018) 296–306.
  47. J.M. Jazić, T. Đurkić, B. Bašić, M. Watson, T. Apostolović, A. Tubić, J. Agbaba, Degradation of a chloroacetanilide herbicide in natural waters using UV activated hydrogen peroxide, persulfate and peroxymonosulfate processes, Environ. Sci. Water Res. Technol., 6 (2020) 2800–2815.
  48. R. Zhang, P. Sun, T.H. Boyer, L. Zhao, C.H. Huang, Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS, Environ. Sci. Technol., 49 (2015) 3056–3066.
  49. T. Liu, K. Yin, C. Liu, J. Luo, J. Crittenden, W. Zhang, S. Luo, Q. He, Y. Deng, H. Liu, D. Zhang, The role of reactive oxygen species and carbonate radical in oxcarbazepine degradation via UV, UV/H2O2: kinetics, mechanisms and toxicity evaluation, Water Res., 147 (2018) 204–213.
  50. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78 (2010) 533–540.
  51. M. Xu, J. Deng, A. Cai, X. Ma, J. Li, Q. Li, X. Li, Comparison of UVC and UVC/persulfate processes for tetracycline removal in water, Chem. Eng. J., 384 (2020) 123320, doi: 10.1016/j. cej.2019.123320.
  52. E. Rommozzi, S. Giannakis, R. Giovannetti, D. Vione, C. Pulgarin, Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (Bi)carbonate, chloride, nitrate and nitrite effects, Appl. Catal., B, 270 (2020) 118877, doi: 10.1016/j.apcatb.2020.118877.