1. R. Wang, J. Zimmerman, Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world, Environ. Sci. Technol., 50 (2016) 5143–5153.
  2. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  3. G. Meerganz von Medeazza, V. Moreau, Modelling of water–energy systems. The case of desalination, Energy, 32 (2007) 1024–1031.
  4. J. Song, T. Li, L. Wright-Contreras, A.W.-K. Law, A review of the current status of small-scale seawater reverse osmosis desalination, Water Int., 42 (2017) 618–631.
  5. A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review, Water Res., 45 (2011) 1907–1920.
  6. M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range, Desalination, 153 (2002) 229–236.
  7. V.G. Gude, Energy consumption and recovery in reverse osmosis, Desal. Water Treat., 36 (2012) 239–260.
  8. J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Appl. Energy, 254 (2019) 113652, doi: 10.1016/j. apenergy.2019.113652.
  9. S. Bross, W. Kochanowski, N. El Maraghy, SWRO-corehydraulic- system: first field test experience, Desalination, 184 (2005) 223–232.
  10. C.C. Mei, Y.-H. Liu, A.W.K. Law, Theory of isobaric pressure exchanger for desalination, Desal. Water Treat., 39 (2012) 112–122.
  11. P.D. Richard L. Stover, Development of a fourth generation energy recovery device, Desalination, 165 (2004) 313–321.
  12. R.L. Stover, Seawater reverse osmosis with isobaric energy recovery devices, Desalination, 203 (2007) 168–175.
  13. R.L. Stover, B. Andrews, Isobaric energy-recovery devices: past, present, and future, IDA J. Desal. Water Reuse, 4 (2013) 38–43.
  14. I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX pressure exchanger device — a global survey, Desalination, 221 (2008) 136–142.
  15. N. Liu, Z. Liu, Y. Li, L. Sang, An optimization study on the seal structure of fully-rotary valve energy recovery device by CFD, Desalination, 459 (2019) 46–58.
  16. D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device, Desalination, 361 (2015) 65–71.
  17. D. Song, Y. Zhang, H. Wang, L. Jiang, C. Wang, S. Wang, Z. Jiang, H. Li, Demonstration of a piston type integrated high pressure pump-energy recovery device for reverse osmosis desalination system, Desalination, 507 (2021) 115033, doi: 10.1016/j.desal.2021.115033.
  18. Y. Wang, Y. Ren, J. Zhou, E. Xu, S. Xu, Functionality test of an innovative single-cylinder energy recovery device for SWRO desalination system, Desalination, 388 (2016) 22–28.
  19. Y. Wang, S. Wang, S. Xu, Investigations on characteristics and efficiency of a positive displacement energy recovery unit, Desalination, 177 (2005) 179–185.
  20. J. Zhou, Y. Wang, Y. Duan, J. Tian, S. Xu, Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system, Desalination, 416 (2017) 45–53.
  21. Z. Sun, Y. Wang, J. Zhou, Z. Xu, S. Xu, Development and operational stability evaluation of new three-cylinder energy recovery device for SWRO desalination system, Desalination, 502 (2021) 114909, doi: 10.1016/j.desal.2020.114909.
  22. N. Lasse, W.G.W. Langmaack, iSave the Easiest and Most Compact Way to Save Energy on SWRO Plants, 2010 Asia-Pacific Conference on Desalination and Water Reclamation, 2010.
  23. S.P. Center, Compact high energy system for RO plant, World Pumps, 2013 (2013) 27–28.
  24. B. Peñate, L. García-Rodríguez, Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  25. J. Tian, Y. Wang, J. Zhou, Z. He, S. Xu, Development and experimental evaluation of an innovative self-boosting energy recovery device for small-scale SWRO system, Desal. Water Treat., 181 (2020) 28–37.
  26. A. Alhathal Alanezi, A. Altaee, A.O. Sharif, The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process, Chem. Eng. Res. Des., 158 (2020) 12–23.
  27. S. Mambretti, E. Orsi, S. Gagliardi, R. Stover, Behaviour of energy recovery devices in unsteady flow conditions and application in the modelling of the Hamma desalination plant, Desalination, 238 (2009) 233–245.
  28. G.M. Geise, H.-S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, J. Polym. Sci. Pol. Phys., 48 (2010) 1685–1718.
  29. P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination, 391 (2016) 43–60.
  30. K. Jeong, Y.G. Lee, S.J. Ki, J.H. Kim, Modeling seawater reverse osmosis system under degradation conditions of membrane performance: assessment of isobaric energy recovery devices and feed pressure control benefits, Desal. Water Treat., 57 (2015) 20210–20218.
  31. J. Zhou, Y. Wang, Z. Sun, S. Xu, Experimental and numerical investigations of overlapping function in enhancing flow continuity for reciprocating-switcher energy recovery device, Desalination, 487 (2020) 114494, doi: 10.1016/j.desal.2020.114494.
  32. J. Zhou, Y. Wang, Z. Feng, Z. He, S. Xu, Effective modifications of reciprocating-switcher energy recovery device by adopting pilot valve plates to decrease the switching load and fluid fluctuations, Desalination, 462 (2019) 39–47.