References

- S. Zeinali Heris, S.Gh. Etemad, M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer, 33 (2006) 529–535.
- K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. Commun. Heat Mass Transfer, 52 (2009) 2189–2195.
- U.K. Ahmad, M. Hasreen, N.A. Yahaya, B. Rosnadiah, Comparative study of heat transfer and friction factor characteristics of nanofluids in rectangular channel, Procedia Eng., 170 (2017) 541–546.
- L. Xu, J.L. Xu, Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel, Int. Commun. Heat Mass Transfer, 55 (2012) 5673–5686.
- Z. Edalati, S.Z. Heris, S.H. Noi, The study of laminar convective heat transfer of CuO/water nanofluid through an equilateral triangular duct at constant wall heat flux, Heat Transfer – Asian Res., 41 (2012) 418–429.
- M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, Laminar convective heat transfer of non–Newtonian nanofluids with constant wall temperature, Heat Mass Transfer, 47 (2011) 203–209.
- Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48 (2005) 1107–1116.
- W. Duangthongsuk, S. Wongwises, Heat transfer enhancement
and pressure drop characteristics of TiO
_{2}–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52 (2009) 2059–2067. - M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow, 30 (2009) 691–699.
- C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid, J. Alloys Compd., 504S (2010) S385–S388.
- M. Chandrasekar, S. Suresh, A. Chandra Bose, experimental
studies on heat transfer and friction factor characteristics of
Al
_{2}O_{3}-water nanofluid in a circular pipe under laminar flow with wire coil inserts, Exp. Therm. Fluid Sci., 34 (2010) 122–130. - M.K. Moraveji, S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, Int. Commun. Heat Mass Transfer, 39 (2012) 1444–1448.
- A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop
characteristics of CeO
_{2}/water nanofluid in plate heat exchanger, Appl. Therm. Eng., 57 (2013) 24–32. - D. Huang, Z. Wu, B. Sundén, Pressure drop and convective
heat transfer of Al
_{2}O_{3}/water and MWCNT/water nanofluids in a chevron plate heat exchanger, Int. J. Heat Mass Transfer, 89 (2015) 620–626. - P.V. Durga Prasad, A.V.S.S.K.S. Gupta, M. Sreeramulu, L. Syam
Sundar, M.K. Singh, A.C.M. Sousa, Experimental study of heat
transfer and friction factor of Al
_{2}O_{3}nanofluid in U-tube heat exchanger with helical tape inserts, Exp. Therm. Fluid Sci., 62 (2015) 141–150. - D.R. Ray, D.K. Das, R.S. Vajjha, Experimental and numerical investigations ofnanofluids performance in a compact minichannel plate heat exchanger, Int. J. Heat Mass Transfer, 71 (2014) 732–746.
- M.C.S. Reddy, V.V. Rao, Experimental investigation of heat
transfer coefficient and friction factor of ethylene glycol water
based TiO
_{2}nanofluid in double pipe heat exchanger with and without helical coil inserts, Int. Commun. Heat Mass Transfer, 50 (2014) 68–76. - B.X. Wang, X.F. Peng, Experimental investigation on liquid forced-convection heat transfer through microchannels, Int. J. Heat Mass Transfer, 37 (1994) 73–82.
- M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Mater. Sci. Semicond. Process., 39 (2015) 621–628.
- S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Subramanian, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018) 39–45.
- S.J. Kline, F.A. McClintock, Describing uncertainties in singlesample experiments, Mech. Eng., 75 (1953) 3–8.
- R. Barzegarian, M.K. Moraveji, A. Aloueyan, Experimental
investigation on heat transfer characteristics and pressure
drop of BPHE (brazed plate heat exchanger) using TiO
_{2}–water nanofluid, Exp. Fluid Therm. Sci., 74 (2016) 11–18. - W.W. Focke, J. Zacahriades, I. Oliver, The effect of the corrugation inclination angle on the thermo hydraulic performance of plate heat exchangers, Int. J. Heat Mass Transfer, 28 (1985) 1469–1479.
- B. Saleh, L. Syam Sundar, Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids, Int. J. Therm. Sci., 165 (2021) 106935, doi: 10.1016/j. ijthermalsci.2021.106935.
- W.W. Focke, J. Zacahriades, I. Oliver, The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers, Int. J. Heat Mass Transfer, 28 (1985) 1469–1479.
- R.K. Shah, W.W. Fock, E.C. Subbarao, R.A. Mashelkar, Plate Heat Exchangers and Their Design Theory, in: Heat Transfer Design, Hemisphere Publishing, Washington D.C., 1988.
- R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam., 1 (1962) 187–191.
- S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal
conductivity of TiO
_{2}-water based nanofluids, Int. J. Therm. Sci., 44 (2005) 367–375. - W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5 (2003) 167–171.
- E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev., 76 (2007) 061203, doi: 10.1103/ PhysRevE.76.061203.
- G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83 (1977) 97–117.
- D.A. Drew, S.L. Passman, Theory of multi component fluids, Appl. Math. Sci., (1999) 105–121.
- H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20 (1952) 571–581.
- X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13 (1999) 474–480.
- W. Ahmed, Z.Z. Chowdhury, S.N. Kazi, M.R. Bin Johan,
I.A. Badruddin, M.E.M. Soudagar, S. Kamangar, M.A. Mujtaba,
M. Gul, T.M. Yunus Khan, Evaluation on enhanced heat
transfer using sonochemically synthesized stable

ZnO-Eg@ Dw nanofluids in horizontal calibrated circular flow passage, Energies, 14 (2021) 2400, doi:10.3390/en14092400. - Z. Li, M. Sarafraz, A. Mazinani, T. Hayat, H. Alsulami,
M. Goodarzi, Pool boiling heat transfer to CuO-H
_{2}O nanofluid on finned surfaces, Int. J. Heat Mass Transfer, 156 (2020) 119780, doi:10.1016/j.ijheatmasstransfer.2020.119780.