1. O. Falyouna, I. Maamoun, K. Bensaida, A. Tahara, Y. Sugihara, O. Eljamal, Encapsulation of iron nanoparticles with magnesium hydroxide shell for remarkable removal of ciprofloxacin from contaminated water, J. Colloid Interface Sci., 605 (2022) 813–827.
  2. R. Eljamal, I. Kahraman, O. Eljamal, I.P. Thompson, I. Maamoun, G. Yilmaz, Impact of nzvi on the formation of aerobic granules, bacterial growth and nutrient removal using aerobic sequencing batch reactor, Environ. Technol. Innovation, 19 (2020) 100911, doi: 10.1016/j.eti.2020.100911.
  3. G. Vilardi, N. Verdone, Production of metallic iron nanoparticles in a baffled stirred tank reactor: optimization via computational fluid dynamics simulation, Particuology, 52 (2020) 83–96.
  4. G. Vilardi, M. Stoller, L. Di Palma, K. Boodhoo, N. Verdone, Metallic iron nanoparticles intensified production by spinning disk reactor: optimization and fluid dynamics modelling, Chem. Eng. Process. Process Intensif., 146 (2019) 107683, doi: 10.1016/j.cep.2019.107683.
  5. G. Vilardi, N. Verdone, R. Bubbico, Combined production of metallic-iron nanoparticles: exergy and energy analysis of two alternative processes using hydrazine and nabh4 as reducing agents, J. Taiwan Inst. Chem. Eng., 118 (2021) 97–111.
  6. S. Takami, O. Eljamal, A.M.E. Khalil, R. Eljamal, N. Matsunaga, Development of continuous system based on nanoscale zero valent iron particles for phosphorus removal, J. JSCE, 7 (2019) 30–42, doi:10.2208/journalofjsce.7.1_30.
  7. R. Mokete, O. Eljamal, Y. Sugihara, Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions, Chem. Eng. Process. Process Intensif., 150 (2020) 107879, doi:10.1016/j.cep.2020.107879.
  8. T. Shubair, O. Eljamal, A. Tahara, Y. Sugihara, N. Matsunaga, Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters, J. Mol. Liq., 288 (2019) 111026, doi:10.1016/j.molliq.2019.111026.
  9. I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara, Stimulating effect of magnesium hydroxide on aqueous characteristics of iron nanocomposites, Water Sci. Technol., 80 (2019) 1996–2002.
  10. F. He, Z. Li, S. Shi, W. Xu, H. Sheng, Y. Gu, Y. Jiang, B. Xi, Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron, Environ. Sci. Technol., 52 (2018) 8627–8637.
  11. Y. Han, W. Yan, Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment, Environ. Sci. Technol., 50 (2016) 12992–13001.
  12. L. Zhou, T.L. Thanh, J. Gong, J.-H. Kim, E.-J. Kim, Y.-S. Chang, Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zero-valent iron, Chemosphere, 104 (2014) 155–161.
  13. M.A. Asad, U.T. Khan, M.M. Krol, Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): numerical and statistical analysis, J. Contam. Hydrol., 243 (2021) 103870, doi:10.1016/j.jconhyd.2021.103870.
  14. W. Liu, J. Bai, Z. Chi, L. Ren, J. Dong, An in-situ reactive zone with xanthan gum modified reduced graphene oxide supported nanoscale zero-valent iron (XG-nZVI/rGO) for remediation of Cr(VI)-polluted aquifer: dynamic evolutions of Cr(VI) and environmental variables, J. Environ. Chem. Eng., 9 (2021) 104987, doi:10.1016/j.jece.2020.104987.
  15. A.K. Saha, A. Sinha, S. Pasupuleti, Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media, Environ. Technol., 40 (2019) 1543–1556.
  16. H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena, Elsevier, 2006.
  17. H. Ohshima, Electrokinetic phenomena of soft particles, Curr. Opin. Colloid Interface Sci., 18 (2013) 73–82.
  18. S.K. Maurya, S. Sarkar, H.K. Mondal, H. Ohshima, P.P. Gopmandal, Electrophoresis of soft particles with hydrophobic inner core grafted with pH-regulated and highly charged polyelectrolyte layer, Electrophoresis, 43 (2022) 757–766.
  19. H. Ohshima, Electrostatic interaction of soft particles, Adv. Colloid Interface Sci., 226 (2015) 2–16.
  20. H. Ohshima, Electrophoresis of soft particles, Adv. Colloid Interface Sci., 62 (1995) 189–235.
  21. Q. Yu, J. Guo, Y. Muhammad, Q. Li, Z. Lu, J. Yun, Y. Liang, Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zero-valent iron nanoparticles, J. Environ. Manage., 276 (2020) 111245, doi: 10.1016/j.jenvman.2020.111245.
  22. T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions, Environ. Sci. Technol., 41 (2007) 284–290.
  23. D. Fan, G.O. Johnson, P.G. Tratnyek, R.L. Johnson, Sulfidation of nano zero-valent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR), Environ. Sci. Technol., 50 (2016) 9558–9565.
  24. Y. Li, Y. Zhang, Q. Jing, Y. Lin, The influence of Pluronic F-127 modification on nano zero-valent iron (nZVI): sedimentation and reactivity with 2,4-dichlorophenol in water using response surface methodology, Catalysts, 10 (2020) 412, doi: 10.3390/catal10040412.
  25. Y. Liu, Y.X. Zhang, S.S. Lan, S. Hou, Migration experiment and numerical simulation of modified nanoscale zero-valent iron (nZVI) in porous media, J. Hydrol., 579 (2019) 124193.
  26. S.R.C. Rajajayavel, S. Ghoshal, Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zero-valent iron, Water Res., 78 (2015) 144–153.
  27. K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci., 309 (2007) 126–134.
  28. K.L. Chen, S.E. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes, Environ. Sci. Technol., 40 (2006) 1516–1523.
  29. K.L. Chen, M. Elimelech, Aggregation and deposition kinetics of fullerene (C60) nanoparticles, Langmuir, 22 (2006) 10994–11001.
  30. H. Ohshima, Chapter 14 – General Expressions for the Force and Potential Energy of the Double Layer Interaction Between Two Charged Colloidal Particles and Analytic Approximations for the Interaction Between Two Parallel Plates, H. Ohshima, Ed., Theory of Colloid and Interfacial Electric Phenomena, Interface Science and Technology, Vol. 12, Elsevier, 2006, pp. 315–363.
  31. H. Ohshima, M. Nakamura, T. Kondo, Electrophoretic mobility of colloidal particles coated with a layer of adsorbed polymers, Colloid Polym. Sci., 270 (1992) 873–877.
  32. M.V. Smoluchowski, Vers versuch einer mathematischen theorie der koagulationskinetik kolloider losungen,
    Z. Phys. Chem., 92 (1917) 129–168.
  33. J. Škvarla, J. Škvarla, A unified analysis of the coagulation behaviour of silica hydrosols—when the colloid and polymer science meet, Colloid Polym. Sci., 298 (2020) 123–138.
  34. H. Ohshima, M. Nakamura, T. Kondo, Electrophoretic mobility of colloidal particles coated with a layer of adsorbed polymers, Colloid Polym. Sci., 270 (1992) 873–877.
  35. J. Gregory, Approximate expressions for retarded van der waals interaction, J. Colloid Interface Sci., 83 (1981) 138–145.
  36. S.-W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27 (2011) 6059–6068.
  37. K.A. Huynh, K.L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions, Environ. Sci. Technol., 45 (2011) 5564–5571.
  38. M. Noh, T. Kim, H. Lee, C.-K. Kim, S.-W. Joo, K. Lee, Fluorescence quenching caused by aggregation
    of water-soluble CdSe quantum dots, Colloids Surf., A, 359 (2010) 39–44.
  39. H. Ohshima, Effective surface potential and double-layer interaction of colloidal particles, J. Colloid Interface Sci., 174 (1995) 45–52.
  40. L. Wu, L. Liu, B. Gao, R. Muñoz-Carpena, M. Zhang, H. Chen, Z. Zhou, H. Wang, Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling, Langmuir, 29 (2013) 15174–15181.
  41. R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Selfassembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram, Langmuir, 26 (2010) 7833–7842.
  42. L. Feriancikova, S. Xu, Deposition and remobilization of graphene oxide within saturated sand packs, J. Hazard. Mater., 235 (2012) 194–200.
  43. K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy, Nat. Mater., 2 (2003) 88–91.
  44. H. Ohshima, Chapter 16 – Double Layer Interaction Between Soft Particles, H. Ohshima, Ed., Theory of Colloid and Interfacial Electric Phenomena, Interface Science and Technology, Vol. 12, Elsevier, 2006, pp. 390–408.
  45. G. Fritz, V. Schädler, N. Willenbacher, N.J. Wagner, Electrosteric stabilization of colloidal dispersions, Langmuir, 18 (2002) 6381–6390.
  46. J.L. Ortega-Vinuesa, A. Martı́n-Rodrı́guez, R. Hidalgo-Álvarez, Colloidal stability of polymer colloids with different interfacial properties: mechanisms, J. Colloid Interface Sci., 184 (1996) 259–267.
  47. E. Piacenza, A. Presentato, R.J. Turner, Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures, Crit. Rev. Biotechnol., 38 (2018) 1137–1156.