1. D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N.P. Xekoukoulotakis, D. Venieri, D. Mantzavinos, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis, J. Environ. Manage., 98 (2012) 168–174.
  2. A. Fakhri, S. Adami, Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  3. H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren, Y. Li, Removal of cephalexin from aqueous solutions by original and
    Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks kinetics and equilibrium studies,
    J. Hazard. Mater., 185 (2011) 1528–1535.
  4. M. Fazlzadeh, S. Gulshan, A. Bohloul, M. Rezaei, Evaluation of electro-Fenton process in amoxicillin removal from aqueous solutions, J. Health Hyg., 7 (2016) 276–287.
  5. Y.J. Jung, W.G. Kim, Y. Yoon, J.-W. Kang, Y.M. Hong, H.W. Kim, Removal of amoxicillin by UV and UV/H2O2 processes, Sci. Total Environ., 420 (2012) 160–167.
  6. T.C. Morris, L. Ranaghan, J. Morrison, Phase II trial of clarithromycin and pamidronate therapy in myeloma, Med. Oncol., 18 (2001) 79–84.
  7. J. Kadota, H. Mukae, H. Ishii, T. Nagata, H. Kaida, K. Tomono, S. Kohno, Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis, Respir. Med., 97 (2003) 844–850.
  8. F. Javier Benitez, J.L. Acero, F.J. Real, G. Roldán, E. Rodriguez, Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water, J. Chem. Technol. Biotechnol., 86 (2011) 858–866.
  9. Z. Heidari, R. Pelalak, R. Eshaghi Malekshah, M. Pishnamazi, M. Rezakazemi, T.M. Aminabhavi, S. Shirazian, A new insight into catalytic ozonation of sulfasalazine antibiotic by plasmatreated limonite nanostructures: experimental, modeling and mechanism, Chem. Eng. J., 428 (2022) 131230, doi: 10.1016/j.cej.2021.131230.
  10. G. Yang, Y. Liang, Z. Xiong, J. Yang, K. Wang, Z. Zeng, Molten salt-assisted synthesis of Ce4O7/Bi4MoO9 heterojunction photocatalysts for photo-Fenton degradation of tetracycline: enhanced mechanism, degradation pathway and products toxicity assessment, Chem. Eng. J., 425 (2021) 130689, doi: 10.1016/j.cej.2021.130689.
  11. K. Hasani, A. Peyghami, A. Moharrami, M. Vosoughi, A. Dargahi, The efficacy of sono-electro-Fenton process for removal of cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms, Arabian J. Chem., 13 (2020) 6122–6139.
  12. Q. Shang, W. Chi, P. Zhang, Y. Ling, X. Liu, G. Cui, W. Liu, X. Shi, B. Tang, Optimization of Bi2O3/TS-1 preparation and photocatalytic reaction conditions for low concentration erythromycin wastewater treatment based on artificial neural network, Process Saf. Environ. Prot., 157 (2022) 297–305.
  13. H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
  14. C. Brahmi, M. Benltifa, M. Ghali, F. Dumur, C. Simonnet- Jégat, M. Valérie, F. Morlet-Savary, L. Bousselmi, J. Lalevée, Performance improvement of the photocatalytic process for the degradation of pharmaceutical compounds using new POM/polymer photocatalysts, J. Environ. Chem. Eng., 9 (2021) 106015, doi:10.1016/j.jece.2021.106015.
  15. J. Ma, F. Zhu, P. Ji, Q. Zou, H. Wang, G. Xu, Enhanced visible-light photocatalytic performance of Co/Ni doped Cu2MoS4 nanosheets for Rhodamine B and erythromycin degradation, J. Alloys Compd., 863 (2021) 158612, doi:10.1016/j.jallcom.2021.158612.
  16. S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
  17. R. Kıdak, Ş. Doğan, Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water, Ultrason. Sonochem., 40 (2018) 131–139.
  18. L.L. Albornoz, S.W. da Silva, J.P. Bortolozzi, E.D. Banús, P. Brussino, M.A. Ulla, A.M. Bernardes, Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: activity and stability, Chemosphere, 268 (2021) 128858, doi: 10.1016/j.chemosphere.2020.128858.
  19. M. Sui, S. Xing, L. Sheng, S. Huang, H. Guo, Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst, J. Hazard. Mater., 227–228 (2012) 227–236.
  20. H. Asadzadeh Patehkhor, M. Fattahi, M. Khosravi-Nikou, Synthesis and characterization of ternary chitosan–TiO2–ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177, doi: 10.1038/s41598-021-03492-5.
  21. A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi, E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite, graphene oxide nanosheets and Cedr extraction solution on IFT reduction and ultimate oil recovery from a carbonate rock, Petroleum, (2020), doi: 10.1016/j.petlm.2020.10.002 (In Press).
  22. H. Kamani, S. Nasseri, M. Khoobi, R.N. Nodehi, A.H. Mahvi, Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution, J. Environ. Health Sci. Eng., 14 (2016) 3,
    doi: 10.1186/s40201-016-0242-2.
  23. H. Kamani, S.D. Ashrafi, A. Jahantiq, E. Norabadi, M. Dashti Zadeh, Catalytic degradation of humic acid using Fe–doped TiO2-ultrasound hybrid system from aqueous solution, Int. J. Environ. Anal. Chem., (2021) 1–15, doi:10.1080/03067319.2021.1979535.
  24. V. Moradi, M.B. Jun, A. Blackburn, R.A. Herring, Significant improvement in visible light photocatalytic activity of Fe-doped TiO2 using an acid treatment process, Appl. Surf. Sci., 427 (2018) 791–799.
  25. D. Panda, S. Manickam, Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants, Ultrason. Sonochem., 36 (2017) 481–496.
  26. M. Dashtizadeh, H. Kamani, S.D. Ashrafi, A. Hossein Panahi, A.H. Mahvi, D. Balarak, M. Hoseini, H. Ansari,
    E. Bazrafshan, F. Parsafar, Human health risk assessment of trace elements in drinking tap water in Zahedan city, Iran, J. Environ. Health Sci. Eng., 17 (2019) 1163–1169.
  27. A. Hossein Panahi, S.D. Ashrafi, H. Kamani, M. Khodadadi, E. Lima, F.K. Mostafapour, A. Mahvi, Removal of cephalexin from artificial wastewater by mesoporous silica materials using Box–Behnken response surface methodology, Desal. Water Treat., 159 (2019) 169–180.
  28. A. Jahantiq, R. Ghanbari, A. Hossein Panahi, S.D. Ashrafi, A.D. Khatibi, E. Noorabadi, A. Meshkinian, H. Kamani, Photocatalytic degradation of 2,4,6-trichlorophenol in aqueous solutions using synthesized Fe-doped TiO2 nanoparticles via response surface methodology, Desal. Water Treat., 159 183 (2020) 366–373.
  29. E. Norabadi, S.D. Ashrafi, H. Kamani, A. Jahantiq, Degradation of 2,6-dichlorophenol by Fe-doped TiO2 sonophotocatalytic process: kinetic study, intermediate product, degradation pathway, Int. J. Environ. Anal. Chem., (2020) 1–16, doi: 10.1080/03067319.2020.1837122.
  30. Z. Es’haghi, A. Nezhadali, A.-D. Khatibi, Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography, Anal. Bioanal. Chem., 408 (2016) 5537–5549.
  31. R. Wang, X. Wang, X. Xi, R. Hu, G. Jiang, Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites, Adv. Mater. Sci. Eng., 2012 (2012) 409379, doi: 10.1155/2012/409379.
  32. H. Niu, Q. Wang, H. Liang, M. Chen, C. Mao, J. Song, S. Zhang, Y. Gao, C. Chen, Visible-light active and magnetically recyclable nanocomposites for the degradation of organic dye, Materials, 7 (2014) 4034–4044.
  33. C.L. Luu, Q.T. Nguyen, S.T. Ho, Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method, Adv. Nat. Sci. Nanosci. Nanotechnol., 1 (2010) 015008, doi: 10.1088/2043-6254/1/1/015008.
  34. E. Craciun, L. Predoana, I. Atkinson, I. Jitaru, E.M. Anghel, V. Bratan, C. Gifu, C. Anastasescu, A. Rusu, V. Raditoiu,
    E. Vasile, M. Anastasescu, I. Balint, M. Zaharescu, Fe3+-doped TiO2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation, J. Photochem. Photobiol., A, 356 (2018) 18–28.
  35. S. Hu, A. Wang, X. Li, H. Löwe, Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light, J. Phys. Chem. Solids, 71 (2010) 156–162.
  36. G.-S. Shao, X.-J. Zhang, Z.-Y. Yuan, Preparation and photocatalytic activity of hierarchically mesoporousmacroporous TiO2–xNx, Appl. Catal., B, 82 (2008) 208–218.
  37. N. Abbas, G.N. Shao, M.S. Haider, S. Imran, S.S. Park, H.T. Kim, Sol–gel synthesis of TiO2-Fe2O3 systems: effects of Fe2O3 content and their photocatalytic properties, J. Ind. Eng. Chem., 39 (2016) 112–120.
  38. J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2,
    J. Phys. Chem. C, 114 (2010) 783–792.
  39. S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation of Fe-doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Adv. Mater. Sci. Eng., 2017 (2017) 2191659, doi:10.1155/2017/2191659.
  40. D.R. Reddy, G.K. Dinesh, S. Anandan, T. Sivasankar, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe-doped TiO2, Chem. Eng. Process. Process Intensif., 99 (2016) 10–18.
  41. N. Farhangi, R.R. Chowdhury, Y. Medina-Gonzalez, M.B. Ray, P.A. Charpentier, Visible light active Fe-doped TiO2 nanowires grown on graphene using supercritical CO2, Appl. Catal., B, 110 (2011) 25–32.
  42. Y. Sui, Q. Liu, T. Jiang, Y. Guo, Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration
    from Ti-bearing tailings, Appl. Surf. Sci., 428 (2018) 1149–1158.
  43. P.M. Álvarez, J. Jaramillo, F. Lopez-Pinero, P.K. Plucinski, Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water, Appl. Catal., B, 100 (2010) 338–345.
  44. G. Li, B. Wang, J. Zhang, R. Wang, H. Liu, Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline, Appl. Surf. Sci., 478 (2019) 1056–1064.
  45. N.P. Xekoukoulotakis, N. Xinidis, M. Chroni, D. Mantzavinos, D. Venieri, E. Hapeshi, D. Fatta-Kassinos, UV-A/TiO2 photocatalytic decomposition of erythromycin in water: factors affecting mineralization and antibiotic activity, Catal. Today, 151 (2010) 29–33.
  46. H. Kamani, G.H. Safari, G. Asgari, S.D. Ashrafi, Data on modeling of enzymatic elimination of Direct Red 81 using response surface methodology, Data Brief, 18 (2018) 80–86.
  47. E. Norabadi, A. Hossein Panahi, R. Ghanbari, A. Meshkinian, H. Kamani, S.D. Ashrafi, Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box–Behnken response surface methodology, Desal. Water Treat., 192 (2020) 234–240.
  48. R. Mohammadi, B. Massoumi, M. Rabani, Photocatalytic decomposition of amoxicillin trihydrate antibiotic in aqueous solutions under UV irradiation using Sn/TiO2 nanoparticles, Int. J. Photoenergy, 2012 (2012) 514856, doi: 10.1155/2012/514856.
  49. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst, Spectrochim. Acta, Part A, 81 (2011) 228–235.
  50. A. Fakhri, S. Rashidi, I. Tyagi, S. Agarwal, V.K. Gupta, Photodegradation of erythromycin antibiotic
    by γ-Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization, J. Mol. Liq., 214 (2016) 378–383.
  51. H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites, Sep. Purif. Technol., 218 (2019) 206–216.
  52. E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Photocatalytic degradation of diclofenac using TiO2–SnO2 mixed oxide catalysts, Environ. Technol., 40 (2019) 929–941.
  53. B. Gao, S. Dong, J. Liu, L. Liu, Q. Feng, N. Tan, T. Liu, L. Bo, L. Wang, Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4, Chem. Eng. J., 304 (2016) 826–840.
  54. D.B. Luiz, A.K. Genena, E. Virmond, H.J. José, R.F.P.M. Moreira, W. Gebhardt, H. Fr Schröder, Identification of degradation products of erythromycin A arising from ozone and advanced oxidation process treatment, Water Environ. Res., 82 (2010) 797–805.