References

  1. Ministry of Environment, Water and Agriculture, Saudi Arabia. Available at: www.mewa.gov.sa
  2. S.H. Aladwani, M.A. Al-Obaidi, I.M. Mujtaba, Performance of reverse osmosis based desalination process using spiral wound membrane: sensitivity study of operating parameters under variable seawater conditions, Clean. Eng. Technol., 5 (2021) 100284, doi: 10.1016/j.clet.2021.100284.
  3. Annual Reports, Saline Water Conversion Corporation (SWCC), Saudi Arabia. Available at: www.swcc.gov.sa
  4. I. Fitzsimons, B. Corcoran, P. Young, G. Foley, Exergy analysis of water purification and desalination: a study of exergy model approaches, Desalination, 359 (2015) 212–224.
  5. A. Al Ghamdi, I. Mustafa, Exergy analysis of a MSF desalination plant in Yanbu, Saudi Arabia, Desalination, 399 (2016) 148–158.
  6. V. Romero-Ternero, L. García-Rodríguez, C. Gómez-Camacho, Exergy analysis of a seawater reverse osmosis plant, Desalination, 175 (2005) 197–207.
  7. A.M. Blanco-Marigorta, M. Masi, G. Manfrida, Exergoenvironmental analysis of a reverse osmosis desalination plant in Gran Canaria, Energy, 76 (2014) 223–232.
  8. Y. Cerci, Exergy analysis of a reverse osmosis desalination plant in California, Desalination, 142 (2002) 257–266.
  9. I.H. Aljundi, Second-law analysis of a reverse osmosis plant in Jordan, Desalination, 239 (2009) 207–215.
  10. A. Gasmi, J. Belgaieb, N. Hajji, Technico-economic study of an industrial reverse osmosis desalination unit, Desalination, 261 (2010) 175–180.
  11. M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Second law analysis of reverse osmosis desalination plants: an alternative design using pressure retarded osmosis, Energy, 36 (2011) 6617–6626.
  12. C. Knutson, Discussion of “Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis”, Energy, 46 (2012) 688–690.
  13. M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Discussion of “Second law analysis of reverse osmosis desalination plants: an alternative design using pressure retarded osmosis”, Energy, 46 (2012) 691–693.
  14. A. Al-Zahrani, J. Orfi, Z. Al-Suhaibani, B. Salim, H. Al-Ansary, Thermodynamic analysis of a reverse osmosis desalination unit with energy recovery system, Procedia Eng., 33 (2012) 404–414.
  15. N. Kahraman, Y.A. Cengel, B. Wood, Y. Cerci, Exergy analysis of a combined RO, NF and EDR desalination plant, Desalination, 171 (2004) 217–232.
  16. B. Peñate, L. García-Rodríguez, Energy optimization of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  17. B.A. Qureshi, S.M. Zubair, Energy-exergy analysis of seawater reverse osmosis plants, Desalination, 385 (2016) 138–147.
  18. B.A Qureshi, S.M. Zubair, Exergetic efficiency of NF, RO and EDR desalination plants, Desalination, 378 (2016) 92–99.
  19. M. Soin, S. Jedrzejak, C. Bouchard, On maximum power of reverse osmosis separation processes, Desalination, 190 (2006) 212–220.
  20. N.M. Eshoul, B. Agnew, M.A. Al-Weshahi, M.S. Atab, Exergy analysis of a two-pass reverse osmosis (RO) desalination unit with and without an energy recovery turbine (ERT) and pressure exchanger (PX), Energies, 8 (2015) 6910–6925.
  21. K.H. Mistry, R.K. McGovern, G.P. Thiel, E.K. Summers, S.M. Zubair, J.J. Lienhard, Entropy generation analysis of desalination technologies, Entropy, 13 (2011) 1829–1864.
  22. K.G. Nayyer, M.H. Sharqawy, L.D. Banchik, J.H. Lienhard, Thermophysical properties of seawater: a review and new correlations that include pressure dependence, Desalination, 390 (2016) 1–24.
  23. Magazine – Water Condition & Purification, January 2005. Available at: https://www.lenntech.com/composition-seawater. htm#ixzz7Dma0fSoC
  24. A. Ulfsbo, Z. Abbas, D.R. Turner, Activity coefficients of a simplified seawater electrolyte at varying salinity (5–40) and temperature (0°C and 25°C) using Monte Carlo Simulations, Mar. Chem., 171 (2015) 78–86.
  25. D.G. Archer, Thermodynamic properties of the NaCl+H2O system I. Thermodynamic properties of NaCl(Cr),
    J. Phys. Chem. Ref. Data, 21 (1992), doi: 10.1063/1.555913.
  26. N. Sato, Chemical Energy and Exergy: An Introduction to Chemical Thermodynamics for Engineers, ISBN 044451645X, 2004.
  27. R. Pal, Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications, Int. J. Mech. Eng. Educ., 47 (2019) 44–72.
  28. J. Szargut, Egzergia. Poradnik obliczania I stosowania, Widawnictwo Politechniki Shlaskej, Gliwice 2007 (J. Szargut, Exergy Calculation and Application Guide, Widawnictwo Politechniki Shlaskej, Gliwice, 2007).
  29. O. Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Activity and activity coefficient of water in aqueous solutions and their relationships with solution structure parameters, Biosci. Biotechnol., Biochem., 61 (1997) 466–469.
  30. A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos, A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants, Energy, 137 (2017) 752–760.
  31. M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Formulation of Seawater Flow Exergy using Accurate Thermodynamic Data, IMECE2010-40915, Proceedings of the IMECE2010, ASME 2010 International Mechanical Engineering Congress and Exposition, November 12–18, 2010.
  32. M.W. Shahzad, M. Burhan, K.C. Ng, Pushing desalination recovery to the maximum limit: membrane and thermal processes integration, Desalination, 416 (2017) 54–64.
  33. M.W. Shahzad, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi effect desalination and adsorption desalination (MEDAD): a hybrid desalination method, Appl. Therm. Eng., 72 (2014) 289–297.