References

  1. H. Wang, Y. Wu, M.B. Feng, W.G. Tu, T. Xiao, T. Xiong, H.X. Ang, X.Z. Yuan, J.W. Chew, Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam, Water Res., 144 (2018) 215–225.
  2. N. Malesic-Eleftheriadou, E.Ν. Evgenidou, G.Z. Kyzas, D.N. Bikiaris, D.A. Lambropoulou, Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene terephthalate)-TiO2 photocatalysts, Chemosphere, 234 (2019) 749–755.
  3. N. Nasseh, B. Barikbin, L. Taghavi, M.A. Nasseri, Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies), Composites, Part B, 159 (2019) 146–156.
  4. S.J. Segovia-Sandoval, L.M. Pastrana-Martínez, R. Ocampo-Pérez, S. Morales-Torres, M.S. Berber-Mendoza,
    F. Carrasco-Marín, Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: effect of operating parameters, Sep. Purif. Technol., 237 (2020) 116341, doi: 10.1016/j.seppur.2019.116341.
  5. J.J. Yu, J. Kiwi, I. Zivkovic, H.M. Rønnow, T.H. Wang, S. Rtimi, Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline, Appl. Catal., B, 248 (2019) 450–458.
  6. T. Ahamad, Mu. Naushad, T. Al-Shahrani, N. Al-Hokbany, S.M. Alshehri, Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: kinetic and thermodynamic studies, Int. J. Biol. Macromol., 147 (2020) 258–267.
  7. C.K. Wang, C.-Y. Lin, G.-Y. Liao, Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process,
    J. Water Process Eng., 37 (2020) 101463, doi: 10.1016/j.jwpe.2020.101463.
  8. N.A. Al-Dhabi, G.A. Esmail, M.V. Arasu, Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrousbed reactor, Chemosphere, 268 (2021) 128726, doi: 10.1016/j. chemosphere.2020.128726.
  9. M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian, A. Allahresani, A.H. Mahvi, Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photocatalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq., 255 (2018) 224–232.
  10. S.-M. Alatalo, E. Daneshvar, N. Kinnunen, A. Meščeriakovas, S.K. Thangaraj, J. Jänis, D.C.W. Tsang, A. Bhatnagar, A. Lähde, Mechanistic insight into efficient removal of tetracycline from water by Fe/graphene, Chem. Eng. J., 373 (2019) 821–830.
  11. A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, S.-M. Lee, Au-nanoparticle/nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light, J. Ind. Eng. Chem., 69 (2019) 141–152.
  12. Y. Wu, Q. Yue, Y. Gao, Z.F. Ren, B.Y. Gao, Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline, J. Environ. Sci., 69 (2018) 173–182.
  13. G.R. Yang, Q.Z. Gao, S.Y. Yang, S.H. Yin, X. Cai, X.Y. Yu, S.S. Zhang, Y.P. Fang, Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles, Chemosphere, 239 (2020) 124831, doi:10.1016/j. chemosphere.2019.124831.
  14. Y. Zhang, J.B. Zhou, X. Chen, L. Wang, W.Q. Cai, Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway, Chem. Eng. J., 369 (2019) 745–757.
  15. T. Saitoh, K. Shibata, K. Fujimori, Y. Ohtani, Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions, Sep. Purif. Technol., 187 (2017) 76–83.
  16. F. Deng, L. Zhao, X.B. Luo, S.L. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater, Chem. Eng. J., 333 (2018) 423–433.
  17. L.H. Lan, X.W. Kong, H.X. Sun, C.W. Li, D. Liu, High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes, J. Environ. Manage., 231 (2019) 439–445.
  18. W.P. Xiong, G.M. Zeng, Z.H. Yang, Y.Y. Zhou, C. Zhang, M. Cheng, Y. Liu, L. Hu, J. Wan, C.Y. Zhou, R. Xu, X. Li, Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent, Sci. Total Environ., 627 (2018) 235–244.
  19. N. Neghi, N.R. Krishnan, M. Kumar, Analysis of metronidazole removal and micro-toxicity in photolytic systems: effects of persulfate dosage, anions and reactor operation-mode, J. Environ. Chem. Eng., 6 (2018) 745–761.
  20. D.Y. Wang, H. Luo, L.X. Liu, W. Wei, L.C. Li, Adsorption characteristics and degradation mechanism of metronidazole on the surface of photocatalyst TiO2: a theoretical study, Appl. Surf. Sci., 478 (2019) 896–905.
  21. M. Ahadi, P. Aberoomand Azar, M.S. Tehrani, S.W. Husain, A comparative study on photodegradation kinetic of tetracycline using visible light sensitized ZnS and Cu-loaded ZnS nanoparticles, J. Appl. Chem., 13 (2018) 249–262.
  22. R.R. Sun, X. Zhang, C.Q. Wang, Y.J. Cao, Co-carbonization of red mud and waste sawdust for functional application as Fenton catalyst: evaluation of catalytic activity and mechanism, J. Environ. Chem. Eng., 9 (2021) 105368, doi: 10.1016/j. jece.2021.105368.
  23. C.Q. Wang, R.R. Sun, R. Huang, Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes, J. Cleaner Prod., 297 (2021) 126681, doi: 10.1016/j. jclepro.2021.126681.
  24. S. Adhami, M. Fazlzadeh, S. Hazrati, Photocatalytic removal of cephalexin by UV/ZnO process from aqueous solutions, J. Environ. Health Eng., 5 (2018) 173–183.
  25. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  26. Y.Y. Gong, J.C. Tang, D.Y. Zhao, Application of iron sulfide particles for groundwater and soil remediation: a review, Water Res., 89 (2016) 309–320.
  27. H. Zhang, L. Peng, A. Chen, C. Shang, M. Lei, K. He, S. Luo, J.H. Shao, Q.R. Zeng, Chitosan-stabilized FeS magnetic composites for chromium removal: characterization, performance, mechanism, and stability, Carbohydr. Polym., 214 (2019) 279–285.
  28. T. Shahryari, A. Mostafavi, D. Afzali, M. Rahmati, Enhancing cadmium removal by low-cost nanocomposite adsorbents from aqueous solutions; a continuous system, Composites, Part B, 173 (2019) 106963, doi:10.1016/j.compositesb.2019.106963.
  29. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
  30. D. Ayodhya, G. Veerabhadram, Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles, J. Sci.: Adv. Mater. Devices, 4 (2019) 381–391.
  31. Q. Liu, L.-B. Zhong, Q.-B. Zhao, C. Frear, Y.-M. Zheng, Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline, ACS Appl. Mater. Interfaces, 7 (2015) 14573–14583.
  32. S.S. Zhang, Y.Y. Sun, F. Liao, Y.W. Shen, H.X. Shi, M.W. Shao, Co9S8-CuS-FeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis, Electrochim. Acta, 283 (2018) 1695–1701.
  33. A. Rahmani-Aliabadi, A. Nezamzadeh-Ejhieh, A visible light FeS/Fe2S3/zeolite photocatalyst towards photodegradation of ciprofloxacin, J. Photochem. Photobiol., A., 357 (2018) 1–10.
  34. N. Nasseh, B. Barikbin, L. Taghavi, Photocatalytic degradation of tetracycline hydrochloride by
    FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study, Environ. Technol. Innovation., 20 (2020) 101035, doi: 10.1016/j.eti.2020.101035.
  35. V. Abdi, Z. Ghasemi, E. Sori nezhad, Biocompatible synthesis of silver-doped titanium dioxide nanoparticles using mangrove, Oceanography, 10 (2019) 123–132.
  36. N. Sreelekha, K. Subramanyam, D. Amaranatha Reddy, G. Murali, K. Rahul Varma, R.P. Vijayalakshmi, Efficient photocatalytic degradation of Rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation, Solid State Sci., 62 (2016) 71–81.
  37. Y. Sun, D. Lv, J.S. Zhou, X.X. Zhou, Z. Lou, S.A. Baig, X.H. Xu, Adsorption of mercury(II) from aqueous solutions using FeS and pyrite: a comparative study, Chemosphere, 185 (2017) 452–461.
  38. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of
    earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visiblelight active photocatalysts for H2 generation and dye removal, J. Mater. Sci.: Mater. Electron., 29 (2018) 11613–11626.
  39. J. William Brown, P.S. Ramesh, D. Geetha, Photodegradation of Methylene blue dye using nanocomposites of copper sulfide doped with Fe/Cd/Zr as nanophotocatalyst, Indian J. Sci. Technol., 12 (2019) 1–11.
  40. Z.Y. Zhang, H.C. Lan, H.J. Liu, J.H. Qu, Removal of tetracycline antibiotics from aqueous solution by amino-Fe(III) functionalized SBA15, Colloids Surf., A, 471 (2015) 133–138.
  41. V.R. Chelli, A.K. Golder, Ag-doping on ZnO support mediated by bio-analytes rich in ascorbic acid for photocatalytic degradation of dipyrone drug, Chemosphere, 208 (2018) 149–158.
  42. R. Benavides, R. González-Hernandez, M.C. González-Cantú, B. Reyes-Vielma, N.C. Billingham, Accelerated degradation of highly loaded polypropylene, J. Vinyl Add. Tech., 9 (2003) 41–49.
  43. J.L. Pablos, C. Abrusci, I. Marín, J. López-Marín, F. Catalina, E. Espí, T. Corrales, Photodegradation of polyethylenes: comparative effect of Fe and Ca-stearates as pro-oxidant additives, Polym. Degrad. Stab., 95 (2010) 2057–2064.
  44. M. Khodadadi, A.H. Panahi, T.J. Al-Musawi, M.H. Ehrampoush, A.H. Mahvi, The catalytic activity of FeNi3@SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method, J. Water Process Eng., 32 (2019) 100943, doi: 10.1016/j.jwpe.2019.100943.
  45. Z.H. Xue, T. Wang, B.D. Chen, T. Malkoske, S.L. Yu, Y.L. Tang, Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method, Materials (Basel), 8 (2015) 6360–6378.
  46. Y. Ma, N.Y. Gao, C. Li, Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29 (2012) 357–362.
  47. K.-H. Wang, Y.-H. Hsieh, L.-J. Chen, The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols, J. Hazard. Mater., 59 (1998) 251–260.
  48. L.S. Lam, Photocatalytic Degradation of Sunset Yellow Dye Over Zinc Oxide Nanoparticles under Fluorescent Light Irradiation, University Tunku Abdul Rahman, 2016.
  49. Z.Y. Lu, X.X. Zhao, Z. Zhu, Y.S. Yan, W.D. Shi, H.J. Dong, Z.F. Ma, N.L. Gao, Y.S. Wang, H. Huang, Enhanced recyclability, stability, and selectivity of CdS/C@Fe3O4 nanoreactors for orientation photodegradation of ciprofloxacin, Chem. Eur. J., 21 (2015) 18528–18532.
  50. B.-y. Fan, H.-b. Liu, Z.-h. Wang, Y.-w. Zhao, S. Yang, S.-y. Lyu, A. Xing, J. Zhang, H. Li, X.-y. Liu, Ferroelectric polarizationenhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering, J. Cent. South Univ., 28 (2021) 3778–3789.
  51. H.-w. Wang, X. Fang, Y.-c. Wan, J. Zhan, Z.-j. Wang, H. Liu, Visible-light-induced NiCo2O4@Co3O4 core/shell heterojunction photocatalysts for efficient removal of organic dyes, J. Cent. South Univ., 28 (2021) 3040–3049.
  52. J.B. Wang, D. Zhi, H. Zhou, X.W. He, D. Zhang, Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode, Water Res., 137 (2018) 324–334.
  53. N. Nasseh, A.H. Panahi, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, F. Khodadoost, Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO
    nano-composite under simulated sunlight: efficiency, stability, and kinetic studies, J. Mol. Liq., 301 (2020) 112434, doi: 10.1016/j.molliq.2019.112434.
  54. N. Barhoumi, H. Olvera-Vargas, N. Oturan, D. Huguenot, A. Gadri, S. Ammar, E. Brillas, M.A. Oturan, Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite, Appl. Catal., B, 209 (2017) 637–647.
  55. C.Q. Wang, R.R. Sun, R. Huang, H. Wang, Superior Fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: synthesis, catalytic performance, and mechanism, Sep. Purif. Technol., 270 (2021) 118773, doi: 10.1016/j.seppur.2021.118773.
  56. R. Nosrati, A. Olad, R. Maramifar, Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation, Environ. Sci. Pollut. Res., 19 (2012) 2291–2299.
  57. G. Safari, M. Hoseini, H. Kamali, R. Moradirad, A.H. Mahvi, Photocatalytic degradation of tetracycline antibiotic from aqueous solutions using UV/TiO2 and UV/H2O2/TiO2, J. Health Hyg., 5 (2014) 203–213.
  58. M. Zhang, W.Q. Song, Q.L. Chen, B.J. Miao, W.C. He, One-pot synthesis of magnetic Ni@Mg(OH)2 core–shell nanocomposites as a recyclable removal agent for heavy metals, ACS Appl. Mater. Interfaces, 7 (2015) 1533–1540.