1. E.D. Coyle, R.A. Simmons, Understanding the Global Energy Crisis, Purdue University Press, USA, 2014.
  2. UNWS, United Nations, Water Scarcity, USA, 2014. Available at:
  3. Net Zero by 2050: A Roadmap for the Global Energy Sector, International Energy Agency, 8 May, 2021. Available at:
  4. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  5. A.P. Avrin, G. He, D.M. Kammen, Assessing the impacts of nuclear desalination and geoengineering to address China’s water shortages, Desalination, 360 (2015) 1–7.
  6. K. Elsaid, E.T. Sayed, B.A.A. Yousef, M.K.H. Rabaia, M.A. Abdelkareem, A.G. Olabi, Recent progress on the utilization of waste heat for desalination: a review, Energy Convers. Manage., 221 (2020) 113105.
  7. E. Jones, M. Qadir, M.T.H.V. Vliet, V. Smakhtin, S.M. Kang, The state of desalination and brine production:
    A global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  8. G.L. Ruan, M. Wang, Z.H. An, G.R. Xu, Y.H. Ge, H.L. Zhao, Progress and perspectives of desalination in China, Membranes, 11 (2021) 206, doi: 10.3390/membranes11030206.
  9. S.H. Zhou, Y.L. Guo, X.S. Mu, S.Q. Shen, Effect of design parameters on thermodynamic losses of the heat transfer process in LT-MEE desalination plant, Desalination, 375 (2015) 40–47.
  10. Y.L. Guo, M.L. Bao, L.Y. Gong, S.Q. Shen, Effects of preheater arrangement on performance of MED desalination system, Desalination, 496 (2020) 114702, doi: 10.1016/j.desal.2020.114702.
  11. S. Sadri, R.H. Khoshkhoo, M. Ameri, Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD+RO), Energy, 149 (2018) 74–83.
  12. A.C. Santos, A.L. Betancor, A.M.D. Suárez, A.G. Martínez, E.R. Asensio, Large-scale desalination based on parabolic trough collectors and double-effect absorption heat pumps, Energy Rep., 6 (2020) 207–222.
  13. O.A. Hamed, H. Miyamura, A New Trend in MED Large Scale Commercial Plants (10 MIGD) Using Tri-Hybrid NF/RO/MED Configuration, ARWADEX 2010, Riyadh, 2010.
  14. A.A. Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  15. V.G. Gude, Geothermal source potential for water desalination – current status and future perspective, Renewable Sustainable Energy Rev., 57 (2016) 1038–1065.
  16. R. Ahmadi, S.M. Pourfatemi, S. Ghaffari, Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm, Desalination, 411 (2017) 76–88.
  17. A. Baccioli, M. Antonelli, U. Desideri, A. Grossi, Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications, Energy, 161 (2018) 456–469.
  18. H.R. Dastgerdi, P.B. Whittaker, H.T. Chua, New MED based desalination process for low grade waste heat, Desalination, 395 (2016) 57–71.
  19. A.K. Adak, P.K. Tewari, Technical feasibility study for coupling a desalination plant to an advanced heavy water reactor, Desalination, 337 (2014) 76–82.
  20. K. Ansari, H. Sayyaadi, M. Amidpour, Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi-effect distillation desalination system with thermo-vapor compressor (MED-TVC), Energy, 35 (2010) 1981–1996.
  21. Z. Dong, M. Liu, X.J. Huang, Y.J. Zhang, Z.Y. Zhang, Y.J. Dong, Dynamical modeling and simulation analysis of a nuclear desalination plant based on the MED-TVC process, Desalination, 456 (2019) 121–125.
  22. I.S.A. Mutaz, Features of multi-effect evaporation desalination plants, Desal. Water Treat., 54 (2015) 3227–3235.
  23. S. Ihm, O.Y.A. Najdi, O.A. Hamed, G. Jun, H. Chung, Energy cost comparison between MSF, MED and SWRO: case studies for dual purpose plants, Desalination, 397 (2016) 116–125.
  24. F.A. Juwayhel, H.E. Dessouky, H. Ettouney, Analysis of singleeffect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114 (1997) 253–275.
  25. R. Kouhikamali, M. Sanaei, M. Mehdizadeh, Process investigation of different locations of thermo-compressor suction in MED-TVC plants, Desalination 280 (2011) 134–138.
  26. I.S. Al-Mutaz, I. Wazeer, Optimization of location of thermocompressor suction in MED-TVC desalination plants, Desal. Water Treat., 57 (2016) 26562–26576.
  27. S.H. Zhou, L.Y. Gong, X.Y. Liu, S.Q. Shen, Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system, Appl. Therm. Eng., 159 (2019) 113759, doi: 10.1016/j.applthermaleng.2019.113759.
  28. K.A. Khalid, M.A. Antar, A. Khalifa, O.A. Hamed, Allocation of thermal vapor compressor in multi effect desalination systems with different feed configurations, Desalination, 426 (2018) 164–173.
  29. B.O. Delgado, P. Palenzuela, D.C.A. Padilla, Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block, Desalination, 394 (2016) 18–29.
  30. F.N. Alasfour, M.A. Darwish, A.O.B. Amer, Thermal analysis of ME-TVC+MEE desalination systems, Desalination, 174 (2005) 39–61.
  31. H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steady-state analysis of the multiple effect evaporation desalination process, Chem. Eng. Technol., 21 (1998) 437–451.
  32. A.O.B. Amer, Development and optimization of ME-TVC desalination system, Desalination, 249 (2009) 1315–1331.
  33. S.Q. Shen, S.H. Zhou, Y. Yang, L.P. Yang, X.H. Liu, Study of steam parameters on the performance of a TVC-MED desalination plant, Desal. Water Treat., 33 (2011) 300–308.
  34. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Exergy and thermo-economic analysis for MED-TVC desalination systems, Desalination, 447 (2018) 29–42.
  35. R.K. Kamali, A. Abbassi, S.A.S. Vanini, M.S. Avval, Thermodynamic design and parametric study of MED-TVC, Desalination, 222 (2008) 596–604.
  36. O.A. Hamed, A.M.Z. Amamiri, S. Aly, N. Lior, Thermal performance and exergy analysis of a thermal vapor compression desalination system, Energy Convers. Manage., 37 (1996) 379–387.
  37. H.S. Choi, T.J. Lee, Y.G. Kim, S.L. Song, Performance improvement of multiple-effect distiller with thermal vapor compression system by exergy analysis, Desalination, 182 (2005) 239–249.
  38. L.P Yang, S.Q. Shen, Assessment of energy requirement for water production at dual-purpose plants in China, Desalination, 205 (2007) 214–223.
  39. H.T. El-Dessouky, H.M. Ettouney, F.A. Juwayhel, Multiple effect evaporation-vapour compression desalination processes, Chem. Eng. Res. Des., 78 (2000) 662–676.
  40. Y.H. Zhu, W.J. Cai, Y.Z. Li, C.Y. Wen, Anode gas recirculation behavior of a fuel ejector in hybrid solid oxide fuel cell systems: performance evaluation in three operational modes, J. Power Sources, 185 (2008) 1122–1130.
  41. D.W. Sun, Experimental investigation of the performance characteristics of a steam jet refrigeration system, Energy Sources, 19 (1997) 349–367.
  42. M. Engelbracht, R. Peters, L. Blum, D. Stolten, Comparison of a fuel-driven and steam-driven ejector in solid oxide fuel cell systems with anode off-gas recirculation: part-load behaviour, J. Power Sources, 277 (2015) 251–260.
  43. F. Wang, Y.N. Yang, W.W. Ding, S.P. Yin, Performance analysis of ejector at off-design condition with an unconstant-pressure mixing model, Int. J. Refrig., 99 (2019) 204–212.
  44. N. Ruangtrakoon, T. Thongtip, An experimental investigation to determine the optimal heat source temperature for R141b ejector operation in refrigeration cycle, Appl. Therm. Eng., 170 (2020) 114841, doi: 10.1016/j.applthermaleng.2019.114841.
  45. J. Yan, W.J. Cai, Area ratio effects to the performance of aircooled ejector refrigeration cycle with R134a refrigerant, Energy Convers. Manage., 53 (2012) 240–246.
  46. G. Besagni, R. Mereu, F. Inzoli, Ejector refrigeration: a comprehensive review, Renewable Sustainable Energy Rev., 53 (2016) 373–407.
  47. Y.Z. Tang, Z.L. Liu, Y.X. Li, N. Yang, Y.D. Wan, K.J. Chua, A double-choking theory as an explanation of the evolution laws of ejector performance with various operational and geometrical parameters, Energy Convers. Manage., 206 (2020) 112499, doi: 10.1016/j.enconman.2020.112499.
  48. Y. Han, X.D. Wang, A.C.Y. Yuen, A. Li, L.X. Guo, G.H. Yeoh, J.Y. Tu, Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system, Int. J. Refrig., 113 (2020) 296–307.
  49. R. Yapıcı, H.K. Ersoy, A. Aktoprakoğlu, H.S. Halkacı, O. Yiğit, Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio, Int. J. Refrig., 31 (2008) 1183–1189.
  50. R.H. Yen, B.J. Huang, C.Y. Chen, T.Y. Shiu, C.W. Cheng, S.S. Chen, K. Shestopalov, Performance optimization for a variable throat ejector in a solar refrigeration system, Int. J. Refrig., 36 (2013) 1512–1520.
  51. Z.Z. Chen, X. Jin, A. Shimizu, E. Hihara, C.B. Dang, Effects of the nozzle configuration on solar-powered variable geometry ejectors, Sol. Energy, 150 (2017) 275–286.
  52. C. Li, Y.Z. Li, W.J. Cai, Y. Hu, H.R. Chen, J. Yan, Analysis on performance characteristics of ejector with variable arearatio for multi-evaporator refrigeration system based on experimental data, Appl. Therm. Eng., 68 (2014) 125–132.
  53. W.D. Gu, X.L. Wang, L. Wang, X.H. Yin, H.B. Liu, Performance investigation of an auto-tuning area ratio ejector for MEDTVC desalination system, Appl. Therm. Eng., 155 (2019) 470–479.
  54. I.S. Park, Robust numerical analysis based design of the thermal vapor compressor shape parameters for multi-effect desalination plants, Desalination, 242 (2009) 245–255.
  55. Y. Yang, S.Q. Shen, S.H. Zhou, X.S Mu, K. Zhang, Research for the adjustable performance of the thermal vapor compressor in the MED-TVC system, Desal. Water Treat., 53 (2015) 1725–1734.
  56. B. Shahzamanian, S. Varga, J. Soares, A.I.P. Marrero, A.C. Oliveira, Performance evaluation of a variable geometry ejector applied in a multi-effect thermal vapor compression desalination system, Appl. Therm. Eng., 195 (2021) 117177, doi: 10.1016/j.applthermaleng.2021.117177.
  57. E.Y. Sokolov, N.M. Zinger, Jet Apparatuses (Q.Y. Hang Trans.), Science Press, Beijing, 1977, pp. 17–78.
  58. Y.M. Chen, C.Y. Sun, Experimental study of the performance characteristics of a steam-ejector refrigeration system, Exp. Therm. Fluid Sci., 15 (1997) 384–394.
  59. C. Vereda, R. Ventas, A. Lecuona, M. Venegas, Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions, Appl. Energy, 97 (2012) 305–312.