1. R.D. Jones, H.B. Jampani, J.L. Newman, A.S. Lee, Triclosan: a review of effectiveness and safety in health care settings, Am. J. Infect. Control., 28 (2000) 184–196.
  2. A.B. Dann, A. Hontela, Triclosan: environmental exposure, toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011) 285–311.
  3. I. Aguilar-Romero, E. Romero, R.-M. Wittich, P. van Dillewijn, Bacterial ecotoxicity and shifts in bacterial communities associated with the removal of ibuprofen, diclofenac and triclosan in biopurification systems, Sci. Total Environ., 741 (2020) 140461, doi: 10.1016/j.scitotenv.2020.140461.
  4. S. Lu, N. Wang, S. Ma, X. Hu, L. Kang, Y. Yu, Parabens and triclosan in shellfish from Shenzhen coastal waters: bioindication of pollution and human health risks, Environ. Pollut., 246 (2019) 257–263.
  5. G.S. Dhillon, S. Kaur, R. Pulicharla, S.K. Brar, M. Cledón, M. Verma, R.Y. Surampalli, Triclosan: current status, occurrence, environmental risks and bioaccumulation potential, Int. J. Environ. Res. Public Health, 12 (2015) 5657–5684.
  6. D.R. Orvos, D.J. Versteeg, J. Inauen, M. Capdevielle, A. Rothenstein, V. Cunningham, Aquatic toxicity of triclosan, Environ. Toxicol. Chem., 21 (2002) 1338–1349.
  7. A. Thompson, P. Griffin, R. Stuetz, E. Cartmell, The fate and removal of triclosan during wastewater treatment, Water Environ. Res., 77 (2005) 63–67.
  8. Z. Luo, Y. He, D. Zhi, L. Luo, Y. Sun, E. Khan, D.C. Tsang, Current progress in treatment techniques of triclosan from wastewater: a review, Sci. Total Environ., 696 (2019) 133990, doi: 10.1016/j.scitotenv.2019.133990.
  9. T.A. Saleh, Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies, Environ. Technol. Innovation, 24 (2021) 101821, doi: 10.1016/j.eti.2021.101821.
  10. C. Lei, Y.Y. Hu, M.Z. He, Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
  11. T.A. Saleh, M. Mustaqeem, M. Khaled, Developing water treatment technologies in removing heavy metals from wastewater: a review, Environ. Nanotechnol. Monit. Manage., 17 (2022) 100617, doi:10.1016/j.enmm.2021.100617.
  12. M. Kim, J. Lee, C. Lee, S. Park, Thermal treatment of attapulgite for phosphate removal: a cheap and natural adsorbent with high adsorption capacity, Desal. Water Treat., 114 (2018) 175–184.
  13. S.K. Behera, S.Y. Oh, H.S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179 (2010) 684–691.
  14. H.H. Cho, H. Huang, K. Schwab, Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes, Langmuir, 27 (2011) 12960–12967.
  15. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—a critical review, Chemosphere, 58 (2005) 1049–1070.
  16. L. Li, P.A. Quinlivan, D.R. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
  17. Y. Tong, B.K. Mayer, P.J. McNamara, Triclosan adsorption using wastewater biosolids-derived biochar, Environ. Sci. Water Res. Technol., 2 (2016) 761–768.
  18. H. Bamdad, K. Hawboldt, S. MacQuarrie, A review on common adsorbents for acid gases removal: focus on biochar, Renewable Sustainable Energy Rev., 81 (2018) 1705–1720.
  19. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  20. J. Li, Y. Li, Y. Wu, M. Zheng, A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant, J. Hazard. Mater., 280 (2014) 450–457.
  21. P.J.M. Carrott, M.R. Carrott, Lignin–from natural adsorbent to activated carbon: a review, Bioresource Technol., 98 (2007) 2301–2312.
  22. Y. Li, S.M. Shaheen, J. Rinklebe, N.L. Ma, Y. Yang, M.A. Ashraf, W.X. Peng, Pyrolysis of Aesculus chinensis Bunge seed with Fe2O3/NiO as nanocatalysts for the production of biooil material, J. Hazard. Mater., 416 (2021) 126012, doi: 10.1016/j. jhazmat.2021.126012.
  23. L.R. Drăghici, D.I. Hădărugă, N.G. Hădărugă, Aesculus species: a review on biologically active compounds and their possible applications, J. Agroaliment. Proc. Technol., 26 (2020) 422–428.
  24. H. Kimura, S. Ogawa, A. Sugiyama, M. Jisaka, T. Takeuchi, K. Yokota, Anti-obesity effects of highly polymeric proanthocyanidins from seed shells of Japanese horse chestnut (Aesculus turbinata Blume), Food Res. Int., 44 (2011) 121–126.
  25. H. Kimura, S. Ogawa, T. Ishihara, M. Maruoka, S. Tokuyama-Nakai, M. Jisaka, K. Yokota, Antioxidant activities and structural characterization of flavonol O-glycosides from seeds of Japanese horse chestnut (Aesculus turbinata BLUME), Food Chem., 228 (2017) 348–355.
  26. J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution, Water Res., 84 (2015) 350–361.
  27. L. Shi, X. Zho, S. Zhou, Y. Zhang, Adsorption Isotherm and Thermodynamic of Triclosan on Activated Sludge, International Conference on Electric Technology and Civil Engineering., IEEE, Lushan, China, 2011, pp. 975–978.
  28. A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova, M. Schenderlein, O. Lygina, R. Miller, Triclosan as model system for the adsorption on recycled adsorbent materials, Colloids Surf., A, 505 (2016) 193–196.
  29. M. He, Z. Xu, Y. Sun, P.S. Chan, I. Lui, D.C.W. Tsang, Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar, Bioresour. Technol., 341 (2021) 125811, doi: 10.1016/j.biortech.2021.125811.
  30. L.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L. Oliveira, G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manage., 113 (2020) 96–104.
  31. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, K.K. Unger, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem., 66 (1994) 1739–1758.
  32. K. Zhu, X. Wang, M. Geng, D. Chen, H. Lin, H. Zhang, Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism, Chem. Eng. J., 374 (2019) 1253–1263.
  33. K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis temperature on physico-chemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour. Technol., 118 (2012) 158–162.
  34. D. Chen, X. Yu, C. Song, X. Pang, J. Huang, Y. Li, Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar, Bioresour. Technol., 218 (2016) 1303–1306.
  35. W.A.W.A.K. Ghani, A. Mohd, G. da Silva, R.T. Bachmann, Y.H. Taufiq-Yap, U. Rashid, A.H. Al-Muhtaseb, Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization, Ind. Crops Prod., 44 (2013) 18–24.
  36. Y. Jia, S. Shi, J. Liu, S. Su, Q. Liang, X. Zeng, T. Li, Study of the effect of pyrolysis temperature on the Cd2+ adsorption characteristics of biochar, Appl. Sci., 8 (2018) 1019, doi: 10.3390/app8071019.
  37. B. Khiari, I. Ghouma, A.I. Ferjani, A.A. Azzaz, S. Jellali, L. Limousy, M. Jeguirim, Kenaf stems: thermal characterization and conversion for biofuel and biochar production, Fuel, 262 (2020) 116654, doi:10.1016/j.fuel.2019.116654.
  38. K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, Bioresour. Technol., 107 (2012) 419–428.
  39. B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Cleaner Prod., 174 (2018) 977–987.
  40. T.A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci., 257 (2011) 7746–7751.
  41. C. Trigo, L. Cox, K. Spokas, Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents, Sci. Total Environ., 566 (2016) 1454–1464.
  42. J. Gao, Y. Liu, X. Li, M. Yang, J. Wang, Y. Chen, A promising and cost-effective biochar adsorbent derived from jujube pit for the removal of Pb(II) from aqueous solution, Sci. Rep., 10 (2020) 1–13.
  43. B.B. Kaudal, D. Chen, D.B. Madhavan, A. Downie, A. Weatherley, An examination of physical and chemical properties of urban biochar for use as growing media substrate, Biomass Bioenergy, 84 (2016) 49–58.
  44. H. Zeng, H. Zeng, H. Zhang, A. Shahab, K. Zhang, Y. Lu, I. Nabi, F. Naseem, H. Ullah, Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar, J. Cleaner Prod., 286 (2021) 124964, doi: 10.1016/j.jclepro.2020.124964.
  45. W.W. Simons, The Sadtler Handbook of Infrared Spectra, Sadtler Research Laboratories, Philadelphia, 1978.
  46. V. Sharma, S. Bhardwaj, R. Kumar, On the spectroscopic investigation of Kohl stains via ATR-FTIR and multivariate analysis: application in forensic trace evidence, Vib. Spectrosc., 101 (2019) 81–91.
  47. P. Kumar, P. Kumar, P.V. Rao, N.V. Choudary, G. Sriganesh, Saw dust pyrolysis: effect of temperature and catalysts, Fuel, 199 (2017) 339–345.
  48. B. Soni, S.K. Karmee, Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust, Fuel, 271 (2020) 117570, doi: 10.1016/j.fuel.2020.117570.
  49. U. Moralı, S. Şensöz, Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char, Fuel, 150 (2015) 672–678.
  50. B. Czech, M. Kończak, M. Rakowska, P. Oleszczuk, Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems, J. Cleaner Prod., 288 (2021) 125686, doi:10.1016/j.jclepro.2020.125686.
  51. S.Y. Oh, Y.D Seo, Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms, Environ. Sci. Pollut. Res., 23 (2016) 951–961.
  52. I. Kozyatnyk, P. Oesterle, C. Wurzer, O. Mašek, S. Jansson, Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstocks, Bioresour. Technol., 340 (2021) 125561, doi: 10.1016/j.biortech.2021.125561.
  53. M. Yang, P. Guo, X. Feng, W. Zhang, G. Yang, Solid solution approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan, Microporous Mesoporous Mater., 324 (2021) 111297, doi: 10.1016/j.micromeso.2021.111297.
  54. D.M. Aragón, M.A. Ruidiaz, E.F. Vargas, C. Bregni, D.A. Chiappetta, A. Sosnik, F. Martínez, Solubility of the antimicrobial agent triclosan in organic solvents of different hydrogen bonding capabilities at several temperatures, J. Chem. Eng. Data, 53 (2008) 2576–2580.
  55. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods, J. Hazard. Mater., 390 (2020) 122156, doi: 10.1016/j.jhazmat.2020.122156.
  56. H. Li, W. Zhang, Z. Zhang, X. Zhang, Sorption of triclosan to carbon nanotubes: the combined effects of sonication, functionalization and solution chemistry, Sci. Total Environ., 580 (2017) 1318–1326.
  57. A.W. Ip, J.P. Barford, G. McKay, A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char, Chem. Eng. J., 157 (2010) 434–442.
  58. Z. Cheng, X. Liu, M. Han, W. Ma, Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution, J. Hazard. Mater., 182 (2010) 408–415.
  59. K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Preparation and characterization of activated carbons from Terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater, Ind. Eng. Chem. Res., 44 (2005) 4128–4138.
  60. S.K. Singh, T.G. Townsend, D. Mazyck, T.H. Boyer, Equilibrium and intraparticle diffusion of stabilized landfill leachate onto micro-and meso-porous activated carbon, Water Res., 46 (2012) 491–499.
  61. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
  62. R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Yusop, Removal of bisphenol A from aqueous solution by activated carbon derived from oil palm empty fruit bunch, Water Air Soil Pollut., 225 (2014) 1–12.
  63. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  64. S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi‐walled carbon nanotubes, Clean–Soil Air Water, 41 (2013) 539–547.
  65. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–462.
  66. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O.J.I.J.C. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR. J. Appl. Chem., 3 (2012) 38–45.
  67. J.T. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato, J.M. Fonseca, P.S. Carraro, V.C. Almeida, Stevia residue as new precursor of CO2-activated carbon: optimization of preparation condition and adsorption study of triclosan, Ecotoxicol. Environ. Saf., 172 (2019) 403–410.
  68. M. Triwiswara, C.G. Lee, J.K. Moon, S.J. Park, Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell, Desal. Water Treat., 177 (2020) 71–79.
  69. E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S.H. Jeong, S.-J. Park, Removal of triclosan from aqueous solution via adsorption by kenaf‐derived biochar: its adsorption mechanism study via spectroscopic and experimental approaches, J. Environ. Chem. Eng., 9 (2021) 106343, doi: 10.1016/j.jece.2021.106343.
  70. M. Triwiswara, J.K. Kang, J.K. Moon, C.G. Lee, S.J. Park, Removal of triclosan from aqueous solution using thermally treated rice husks, Desal. Water Treat., 202 (2020) 317–326.
  71. J. Lopez-Morales, O. Perales-Perez, F. Roman-Velazquez, Sorption of triclosan onto tyre crumb rubber, Adsorpt. Sci. Technol., 30 (2012) 831–845.
  72. J. Ma, J. Zhao, Z. Zhu, L. Li, F. Yu, Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride, Environ. Pollut., 254 (2019) 113104, doi: 10.1016/j.envpol.2019.113104.
  73. N.K.E.M. Khori, T. Hadibarata, M.S. Elshikh, A.A. Al-Ghamdi, Z.Y. Salmiati, Z. Yusop, Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies, J. Chin. Chem. Soc., 37 (2018) 1–9.
  74. L.A. González-Fernández, N.A. Medellín-Castillo, R. Ocampo-Pérez, H. Hernández-Mendoza,
    M.S. Berber-Mendoza, C. Aldama-Aguilera, Equilibrium and kinetic modelling of triclosan adsorption
    on single-walled carbon nanotubes, J. Environ. Chem. Eng., 9 (2021) 106382, doi:10.1016/j.jece.2021.106382.
  75. S. Santaeufemia, J. Abalde, E. Torres, Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: kinetic and equilibrium studies, J. Hazard. Mater., 369 (2019) 674–683.
  76. F. Wang, X. Lu, W. Peng, Y. Deng, T. Zhang, Y. Hu, X.Y. Li, Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon, ACS. Omega, 2 (2017) 5378–5384.
  77. R. Gao, X. Kong, F. Su, X. He, L. Chen, Y. Zhang, Synthesis and evaluation of molecularly imprinted core–shell carbon nanotubes for the determination of triclosan in environmental water samples, J. Chromatogr. A, 1217 (2010) 8095–8102.
  78. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  79. S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
  80. Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, H.J. Sun, Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymerloaded bentonite, Chem. Eng. J., 158 (2010) 489–497.
  81. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  82. M. Alkan, Ö. Demirbaş, M. Doğan, Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite, Microporous Mesoporous Mater., 101 (2007) 388–396.
  83. T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Simultaneous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions, J. Ind. Eng. Chem., 20 (2014) 3543–3549.
  84. Z. Feng, H. Chen, H. Li, R. Yuan, F. Wang, Z. Chen, B. Zhou, Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater, Sci. Total Environ., 713 (2020) 136423, doi: 10.1016/j.scitotenv.2019.136423.
  85. A. Ikhlaq, F. Javed, A. Niaz, H.M.S. Munir, F. Qi, Combined UV catalytic ozonation process on iron loaded peanut shell ash for the removal of methylene blue from aqueous solution, Desal. Water Treat., 200 (2020) 231–240.
  86. J.Y. Song, B.N. Bhadra, S.H. Jhung, Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon, Microporous Mesoporous Mater., 243 (2017) 221–228.
  87. S.L. Wang, Y.M. Tzou, Y.H. Lu, G. Sheng, Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazard. Mater., 147 (2007) 313–318.
  88. M.M.S. Saif, N.S. Kumar, M.N.V. Prasad, Binding of cadmium to Strychnos potatorum seed proteins in aqueous solution: adsorption kinetics and relevance to water purification, Colloids Surf., B, 94 (2012) 73–79.
  89. M. Ghorbani, H. Eisazadeh, A.A. Ghoreyshi, Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk, Iran. J. Energy Environ., 3 (2012) 83–88.
  90. M.A. Fard, A. Vosoogh, B. Barkdoll, B. Aminzadeh, Using polymer coated nanoparticles for adsorption of micropollutants from water, Colloids Surf., A, 531 (2017) 189–197.