1. C. Manyi-Loh, S. Mamphweli, E. Meyer, A. Okoh, Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications, Molecules, 23 (2018) 795, doi:10.3390/molecules23040795.
  2. Y. Li, F. Zhang, Z. Cai, J. Zhang, D. Chu, W. Gong, Y. Dongmei, F. Fu, Y. Gao, S. Wang, Treatment of piggery wastewater by ozone purification technology study on antibiotic residues, Heilongjiang Anim. Husb. Veter. Med., 7 (2017) 184–187.
  3. N. Jendrzejewska, E. Karwowska, The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria, Water Sci. Technol., 77 (2018) 2320–2326.
  4. X. Wen, Y. Jia, J. Li, Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium – a white rot fungus, Chemosphere, 75 (2009) 1003–1007.
  5. J. Yang, Y. Lin, X. Yang, T.B. Ng, X. Ye, J. Lin, Degradation of tetracycline by immobilized laccase and the proposed transformation pathway, J. Hazard. Mater., 322 (2017) 525–531.
  6. I. Chopra, M. Robert, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232–260.
  7. X. Yu, R. Yu, B. Xue, J. Liao, W. Zhu, S. Tian, Adsorption of oxytetracycline from aquaculture wastewater by modified zeolites: kinetics, isotherm, and thermodynamics, Desal. Water Treat., 202 (2020) 219–231.
  8. A. Esrafili, M. Tahergorabi, M. Malakootian, M. Kerman, M. Gholami, M. Farzadkia, Synergistic effects of catalytic and photocatalytic ozonation on four sulfonamides antibiotics degradation in an aquatic solution, Desal. Water Treat., 182 (2020) 260–276.
  9. M. Tahergorabi, A. Esrafili, M. Kerman, M. Gholami, M. Farzadkia, Degradation of four antibiotics from aqueous solution by ozonation: intermediates identification and reaction pathways, Desal. Water Treat., 139 (2019) 277–287.
  10. S.C. Chuo, N. Abd-Talib, S.H. Mohd-Setapar, H. Hassan, H.M. Nasir, A. Ahmad, D. Lokhat, G. Md. Ashraf, Reverse micelle extraction of antibiotics using an eco-friendly sophorolipids biosurfactant, Sci. Rep., 8 (2018) 1–13.
  11. S.C. Chuo, A. Ahmad, S.H. Mohd-Setapar, S.F. Mohamed, M. Rafatullah, Utilization of green sophorolipids biosurfactant in reverse micelle extraction of antibiotics: kinetic and mass transfer studies, J. Mol. Liq., 276 (2019) 225–232.
  12. S.C. Chuo, A. Ahmad, S.H. Mohd-Setapar, A. Ripin, Reverse micelle extraction-an alternative for recovering antibiotics, Der. Pharma. Chemica., 6 (2014) 37–44.
  13. A. Ahmad, A. Khatoon, S.H. Mohd-Setapar, S.N. Mohamad- Aziz, M.A.A. Zaini, C.S. Chuong, Effect of parameter on forward extraction of amoxicillin by using mixed reverse micelles, Res. J. Biotechnol., 8 (2013) 10–14.
  14. D. Becker, S. Varela, S. Rodriguez-Mozaz, R. Schoevaart, D. Barcelo, M. Cazes, M.P. Belleville, J. Sanchez-Marcano, Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase-degradation of compounds does not always eliminate toxicity, Bioresour. Technol., 219 (2016) 500–509.
  15. A.M. Mayer, R.C. Staples, Laccase: new functions for old enzyme, Phytochemistry, 60 (2002) 551–565.
  16. F. Wang, L. Xu, L. Zhao, Z. Ding, H. Ma, N. Terry, Fungal laccase production from lignocellulosic agricultural wastes by solidstate fermentation: a review, Microorganisms, 7 (2019) 665, doi:10.3390/microorganisms7120665.
  17. U. Divedi, P. Singh, V.P. Pandey, A. Kumar, Structure-function relationship among bacterial, fungal and plant laccases, J. Mol. Catal. B: Enzym., 68 (2011) 117–128.
  18. S. Zeng, J. Zhao, L. Xia, Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes, Bioprocess Biocatalyst Eng., 40 (2017) 1237–1245.
  19. M.Á. Fernández-Fernández, D. Molde, Recent developments and applications of immobilized laccase, Biotechnol. Adv., 31 (2013) 1808–1825.
  20. N. Hatvani, I. Mécs, Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process, Process Biochem., 37 (2001) 491–496.
  21. J. Goa, A micro Biuret method for protein determination, Scandinavian J. Clin. Lab. Invest., 5 (1953) 218–222.
  22. N. Jafari, S. Rezaie, R. Rezaie, H. Dilmaghani, M.R. Koshayand, M.A. Faramarzi, Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste, Int. J. Biol. Macromol., 105 (2017) 489–498.
  23. F.B. Ahmad, Z. Zhang, O.S.W. Doherty, M.I. O’Hara, The prospect of microbial oil production and applications from oil palm biomass, Biochem. Eng. J., 143 (2019) 9–23.
  24. L. Migliore, M. Fiori, A. Spadoni, E. Galli, Biodegradation of oxytetracycline by Pleurotus ostreatus mycelium: a mycoremediation technique, J. Hazard. Mater., 215–216 (2012) 227–232.
  25. E. Baltierra-Trejo, L. Márquez-Benavides, J.M. Sánchez-Yáñez, Inconsistencies and ambiguities in calculating enzyme activity: the case of laccase, J. Microbiol. Methods, 119 (2015) 126–131.
  26. W.N.I.W. Mohd Zawawi, A.F. Mansor, N.S. Othman, N.A. Mohidem, N.A.N.N. Malek, H. Mat, Synthesis and characterization of immobilized white-rot fungus Trametes versicolor in sol–gel ceramics, J. Sol-Gel Sci. Technol., 77 (2016) 28–38.
  27. H. Bermek, I. Gülseren, K. Li, H. Jung, C. Tamerler, The effect of fungal morphology on ligninolytic enzyme production by a recently isolated wood-degrading fungus Trichophyton rubrum LSK-27, World J. Microbiol. Biotechnol., 20 (2004) 345–349.
  28. M.T. Cambria, S. Ragusa, V. Calabrese, A. Cambria, Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds, Appl. Biochem. Biotechnol., 163 (2011) 415–422.
  29. M. Ahmad, L. Pataczek, T.H. Hilger, Z.A. Zahir, A. Hussain, F. Rasche, R. Schafleitner, S. Solberg, Perspectives of microbial inoculation for sustainable development and environmental management, Front. Microbiol., 9 (2018) 2992, doi: 10.3389/fmicb.2018.02992.
  30. D. Schlosser, R. Grey, W. Fritsche, Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra-and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood, Appl. Microbiol. Biotechnol., 47 (1997) 412–418.
  31. A. Hatakka, Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation, FEMS Microbiol. Rev., 13 (1994) 125–135.
  32. K. Brijwani, A. Rigdon, P.V. Vadlani, Fungal laccases: production, function, and applications in food processing, Enzyme Resour., 2010 (2010) 149748, doi: 10.4061/2010/149748.
  33. C.F. Thurston, The structure and function of fungal laccases, Microbiology, 140 (1994) 19–26.
  34. S. Li, B. Tang, Y. Liu, A. Chen, W. Tang, S. Wei, High level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C, Biocatal. Agric. Biotechnol., 8 (2016) 278–285.
  35. S. Sadhasivam, S. Savitha, K. Swaminathan, F.H. Lin, Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1, Process Biochem., 43 (2008) 736–742.
  36. R. Kumar, J. Kaur, S. Jain, A. Kumar, Optimization of laccase production from Aspergillus flavus by design of experiment technique: partial purification and characterization, J. Genet. Eng. Biotechnol., 14 (2016) 125–131.
  37. A. Lisov, O. Belova, A. Zavarzina, A. Konstantinov, A. Leontievsky, The role of laccase from zygomycetous fungus Mortierella elasson in humic acids degradation, Agronomy, 11 (2021) 2169, doi: 10.3390/agronomy11112169.
  38. A. Aguiar, P.B. Souza-Cruz, A. Ferraz, Oxalic acid, Fe3+ reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermisphora, Enzyme Microb. Technol., 38 (2006) 873–878.
  39. M. Makela, S. Galkin, A. Hatakka, T. Lundell, Production of organic acids and oxalate decarboxylase in
    lignin-degrading white rot fungi, Enzyme Microb. Technol., 30 (2002) 542–549.
  40. A.M.T. Josep, M.M. Mario, C. Cayo, E. Ethel, B. Damià, S. Montserrat, C. Glòria, V. Teresa, E.R.R. Carlos, Degradation of selected agrochemicals by the white rot fungus Trametes versicolor, Sci. Total Environ., 500–501 (2014) 235–242.
  41. A. Aylin, C.N. Mohamed, S. Mika, Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues, Bioresour. Technol., 239 (2017) 28–36.
  42. P. Regmi, J.L.G. Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage., 109 (2012) 61–69.
  43. C. Galhaup, H. Wagner, B. Hinterstoisser, D. Haltrich, Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens, Enzyme Microb. Technol., 30 (2002) 529–536.