1. D.S. Ma, H. Yi, C. Lai, X.G. Liu, X.Q. Huo, Z.W. An, L. Li, Y.K. Fu, B.S. Li, M.M. Zhang, L. Qin, S.Y. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere, 275 (2021) 130104, doi: 10.1016/j. chemosphere.2021.130104.
  2. Z.W. Zhang, Y. Yu, H.B. Xi, Y.X. Zhou, Review of microaeration hydrolysis acidification for the pretreatment of toxic and refractory organic wastewater, J. Cleaner Prod., 317 (2021) 128343, doi:10.1016/j.jclepro.2021.128343.
  3. E. Brillas, A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies, Chemosphere, 250 (2020) 126198, doi:10.1016/j.chemosphere.2020.126198.
  4. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  5. C.Y. Wu, Y.X. Zhou, P.C. Wang, S.J. Guo, Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater, Bioresour. Technol., 194 (2015) 256–262.
  6. K.A. Ayoub, E.D. van Hullebusch, M. Cassir, A. Bermond, Application of advanced oxidation processes for TNT removal: a review, J. Hazard. Mater., 178 (2010) 10–28.
  7. E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  8. B.P. Chaplin, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Processes Impacts, 16 (2014) 1182–1203.
  9. D.S. Ken, A. Sinha, Dimensionally stable anode (Ti/RuO2) mediated electro-oxidation and multi-response optimization study for remediation of coke-oven wastewater, J. Environ. Chem. Eng., 9 (2021) 105025, doi:10.1016/j.jece.2021.105025.
  10. W.W. Lv, Z.J. Huangfu, K.K. Wang, W. Zhang, J.M. Yao, Efficient degradation of indigo wastewater by one-step electrochemical oxidation and electro-flocculation, Pigm. Resin Technol., 50 (2021) 32–40.
  11. Á. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to wastewater treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol., 84 (2009) 1747–1755.
  12. C. Zhang, Y.H. Jiang, Y.L. Li, Z.X. Hu, L. Zhou. M.H. Zhou, Three-dimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J., 228 (2013) 455–467.
  13. J.S. Ma, M. Gao, H.M. Shi, J. Ni, Y.S. Xu, Q.H. Wang, Progress in research and development of particle electrodes for threedimensional electrochemical treatment of wastewater: a review, Environ. Sci. Pollut. Res., 28 (2021) 47800–47824.
  14. L.F. Arenas, C. Ponce De León, F.C. Walsh, Three-dimensional porous metal electrodes: fabrication, characterization and use, Curr. Opin. Electrochem., 16 (2019) 1–9.
  15. K. GracePavithra, P.S. Kumar, V. Jaikumar, P.S. SundarRajan, A review on three-dimensional electrochemical systems: analysis of influencing parameters and cleaner approach mechanism for wastewater, Rev. Environ. Sci. Biotechnol., 19 (2020) 873–896.
  16. Z.-Y. Wu, J. Xu, L. Wu, B.-J. Ni, Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment, Bioresour. Technol., 344 (2021) 126274, doi: 10.1016/j.biortech.2021.126274.
  17. L.N. Xu, H.Z. Zhao, S.Y. Shi, G.Z. Zhang, J.R. Ni, Electrolytic treatment of C.I. Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor, Dyes Pigm., 77 (2008) 158–164.
  18. H.T. Li, H.T. Yang, J.X. Cheng, C.Q. Hu, Z.K. Yang, C.C. Wu, Three-dimensional particle electrode system treatment of organic wastewater: a general review based on patents, J. Cleaner Prod., 308 (2021) 127324, doi: 10.1016/j.jclepro.2021.127324.
  19. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39 (1994) 1857–1862.
  20. C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 35 (2006) 1324–1340.
  21. F. Li, X. Peng, Y.B. Liu, J.C. Mei, L.W. Sun, C.S. Shen, C.Y. Ma, M.H. Huang, Z.W. Wang, W. Sand, A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen, Chemosphere, 229 (2019) 383–391.
  22. T.Z. Niu, J.Z. Cai, P.H. Shi, G.H. Zhao, Unique electrochemical system for in-situ SO4•– generation and pollutants degradation, Chem. Eng. J., 386 (2019) 123971, doi: 10.1016/j.cej.2019.123971.
  23. X. Ren, K. Song, W.M. Chen, J. Liu, D. Liu, Treatment of membrane concentrated leachate by two-stage electrochemical process enhanced by ultraviolet radiation: performance and mechanism, Sep. Purif. Technol., 259 (2021) 118032, doi: 10.1016/j.seppur.2020.118032.
  24. A. Ban, A. Schafer, H. Wendt, Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents, J. Appl. Electrochem., 28 (1998) 227–236.
  25. Y.H. Han, X. Quan, S. Chen, H.M. Zhao, C.Y. Cui, Y.Z. Zhao, Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution, J. Colloid Interface Sci., 229 (2006) 766–771.
  26. K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects, J. Hazard. Mater., 170 (2009) 552–559.
  27. C.C. Huang, Y.J. Su, Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths, J. Hazard. Mater., 175 (2010) 477–483.
  28. M.M. Emamjomeh, M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, J. Environ. Manage., 90 (2009) 1663–1679.
  29. X. Ren, H.B. Wang, K. Song, L. Zeng, J. Liu, Y.M. Ou, Pretreatment optimization of membrane-concentrated leachate through enhanced coagulation, Desal. Water. Treat., 229 (2021) 184–193.
  30. Y. Deng, X. Zhu, N. Chen, C.P. Feng, H.S. Wang, P.J. Kuang, W.W. Hu, Review on electrochemical system for landfill leachate treatment: performance, mechanism, application, shortcoming, and improvement scheme, Sci. Total Environ., 745 (2020) 140768, doi: 10.1016/j.scitotenv.2020.140768.
  31. B.P. Dash, S. Chaudhari, Electrochemical denitrificaton of simulated ground water, Water Res., 39 (2005) 4065–4072.
  32. C. Lei, F.Y. Liang, J. Li, W.Q. Chen, B.B. Huang, Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): effects of molecular structure on the dehalogenation reactivity and mechanisms, Chem. Eng. J., 358 (2019) 1054–1064.
  33. J.X. Cheng, H.T. Yang, C.L. Fan, R.X. Li, X.H. Yu, H.T. Li, Review on the applications and development of fluidized-bed electrodes, J. Solid State Electrochem., 24 (2020) 2199–2217.
  34. Z.L. Zhang, X.G. Hao, Q.S. Yu, N.C. Han, S.B. Liu, Y.P. Sun, Research progress in fluidized-bed electrochemical reactor, Mod. Chem. Ind., 27 (2007) 18–22.
  35. P.A. Tamirisa, F.S. Teng, K.C. Liddell, R. Mahalingam, Fluidizedbed electropolymerization of thin films: modeling and experimentation, J. Electrochem. Soc., 150 (2003) D117–D122.
  36. K. Kazdobin, N. Shvab, S. Tsapakh, Scaling-Up of Fluidized-Bed Electrochemical Reactors, 14th International Congress of Chemical and Process Engineering, Prague, Czech Republic, 2000.
  37. H.Z. Zhao, Y. Sun, L.N. Xu, J.R. Ni, Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway, Chemosphere, 78 (2010) 46–51.
  38. B. Shen, X.H. Wen, X. Huang, Enhanced removal performance of estriol by a three-dimensional electrode reactor, Chem. Eng. J., 327 (2017) 597–607.
  39. G.W. Pan, X.H. Jing, X.Y. Ding, Y.J. Shen, S.J. Xu, W.J. Miao, Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater, J. Alloys Compd., 809 (2019) 151749, doi: 10.1016/j.jallcom.2019.151749.
  40. S. Cho, C. Kim, I. Hwang, Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER), Chemosphere, 259 (2020) 127382, doi:10.1016/j.chemosphere.2020.127382.
  41. N.L. Pedersen, M. Nikbakht Fini, P.K. Molnar, J. Muff, Synergy of combined adsorption and electrochemical degradation of aqueous organics by granular activated carbon particulate electrodes, Sep. Purif. Technol., 208 (2019) 51–58.
  42. R.P. Dighole, A.V. Munde, B.B. Mulik, B.R. Sathe, Bi2O3 nanoparticles decorated carbon nanotube: an effective nanoelectrode for enhanced electrocatalytic 4-nitrophenol reduction, Front. Chem., 8 (2020) 325, doi:10.3389/fchem.2020. 00325.
  43. Z. Chen, Y.M. Zhang, L.C. Zhou, H. Zhu, F. Wan, Y. Wang, D.D. Zhang, Performance of nitrogen-doped graphene aerogel particle electrodes for electrocatalytic oxidation of simulated bisphenol A wastewaters, J. Hazard. Mater., 332 (2017) 70–78.
  44. J. Yu, J. Zou, P. Xu, Q.L. He, Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes, J. Cleaner Prod., 251 (2020) 119744, doi: 10.1016/j.jclepro.2019.119744.
  45. J. Ji, X.Y. Li, J. Xu, X.Y. Yang, H.S. Meng, Z.R. Yan, Zn-Fe-rich granular sludge carbon (GSC) for enhanced electrocatalytic removal of bisphenol A (BPA) and Rhodamine B (RhB) in a continuous-flow
    three-dimensional electrode reactor (3DER), Electrochim. Acta, 284 (2018) 587–596.
  46. M. Iwanow, T. Gärtner, V. Sieber, B. König, Activated carbon as catalyst support: precursors, preparation, modification and characterization, Beilstein J. Org. Chem., 16 (2020) 1188–1202.
  47. Z.M. Sun, L.Y. Chai, Y.D. Shu, Q.Z. Li, M.S. Liu, D.F. Qiu, Chemical bond between chloride ions and surface carboxyl groups on activated carbon, Colloids Surf., A, 530 (2017) 53–59.
  48. Z.J. Zhang, Y. Feng, N. Liu, Y.H. Zhao, X.W. Wang, S.M. Yang, Y.Y. Long, L.P. Qiu, Preparation of Sn/Mn loaded steel slag zeolite particle electrode and its removal effect on Rhodamine B (RhB), J. Water Process Eng., 37 (2020) 101417, doi: 10.1016/j. jwpe.2020.101417.
  49. S.M. Yang, Y. Feng, D. Gao, X.W. Wang, N. Suo, Y.Z. Yu, S.B. Zhang, Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3DAER) with a flotation-tailings particle electrode (FPE): physicochemical properties, influencing factors and the degradation mechanism, J. Hazard. Mater., 407 (2021) 124361, doi: 10.1016/j.jhazmat.2020.124361.
  50. J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J., 361 (2019) 1317–1332.
  51. T.H. Zhou, X.X. Huang, T.J. Zhai, K. Ma, H.W. Zhang, G.Z. Zhang, Fabrication of novel three-dimensional
    Fe3O4-based particles electrodes with enhanced electrocatalytic activity for Berberine removal, Chemosphere, 287 (2022) 132397, doi: 10.1016/j.chemosphere.2021.132397.
  52. L. Yan, Y.F. Wang, J. Li, H.D. Shen, C. Zhang, T.T. Qu, Reduction of chemical oxygen demand from refinery wastewater by threedimensional electrode-electro-Fenton process, Bull. Chem. Soc. Jpn., 89 (2016) 50–57.
  53. S. Liu, Z.Y. Wang, J.F. Li, C. Zhao, X.L. He, G. Yang, Fabrication of slag particle three-dimensional electrode system for methylene blue degradation: characterization, performance and mechanism study, Chemosphere, 213 (2018) 377–383.
  54. X.Y. Wu, X.F. Song, H. Chen, J.G. Yu, Treatment of phenolic compound wastewater using CuFe2O4/Al2O3 particle electrodes in a three-dimensional electrochemical oxidation system, Environ. Technol., 42 (2021) 4393–4404.
  55. M. Li, F.P. Zhao, M. Sillanpaa, Y. Meng, D.L. Yin, Electrochemical degradation of 2-diethylamino-6-methyl-4-hydroxypyrimidine using three-dimensional electrodes reactor with ceramic particle electrodes, Sep. Purif. Technol., 156 (2015) 588–595.
  56. C.C. Guo, H.Y. Liu, C.Z. Wang, J.C. Zhao, W.J. Zhao, N. Lu, J. Qu, X. Yuan, Y.N. Zhang, Electrochemical removal of levofloxacin using conductive graphene/polyurethane particle electrodes in a three-dimensional reactor, Environ. Pollut., 260 (2020) 114101, doi: 10.1016/j.envpol.2020.114101.
  57. H. Ghanbarlou, B. Nasernejad, M. Nikbakht Fini, M.E. Simonsen, J. Muff, Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system, Chem. Eng. J., 395 (2020) 125025, doi: 10.1016/j.cej.2020.125025.
  58. P.C. Guo, C.W. Yang, Z.Q. Chu, X. Zhang, G.P. Sheng, Synchronous reduction-oxidation of 2,4,6-tribromophenol using bifunctional AgPd@CDs in a three dimensional electrochemical reactor, Appl. Catal., B, 297 (2021) 120467, doi: 10.1016/j.apcatb.2021.120467.
  59. Z. Youcai, Chapter 5 – Leachate Treatment Engineering Processes, Pollution Control Technology for Leachate from Municipal Solid Waste, Butterworth-Heinemann Ltd., Oxford, 2018, pp. 361–522.
  60. D.Y. Yu, J. Cui, X.Q. Li, H. Zhang, Y.S. Pei, Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system, Chemosphere, 243 (2020) 125438, doi:10.1016/j.chemosphere.2019.125438.
  61. M. Lu, Advanced treatment of aged landfill leachate through the combination of aged-refuse bioreactor and three-dimensional electrode electro-Fenton process, Environ. Technol., 42 (2019) 1669–1678.
  62. Z.Y. Wang, X.L. He, J.F. Li, J.Y. Qi, C. Zhao, G. Yang, Preparation of magnetic steel-slag particle electrode and its performance in a novel electrochemical reactor for oilfield wastewater advanced treatment, J. Ind. Eng. Chem., 58 (2018) 18–23.
  63. X.Q. Yin, B. Jing, W.J. Chen, J. Zhang, Q. Liu, W. Chen, Study on COD removal mechanism and reaction kinetics of oilfield wastewater, Water Sci. Technol., 76 (2017) 2655–2663.
  64. L. Yan, H.Z. Ma, B. Wang, Y.F. Wang, Y.S. Chen, Electrochemical treatment of petroleum refinery wastewater with threedimensional multi-phase electrode, Desalination, 276 (2011) 397–402.
  65. L.Y. Wei, S.H. Guo, G.X. Yan, C.M. Chen, X.Y. Jiang, Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor, Electrochim. Acta, 55 (2010) 8615–8620.
  66. S. Liu, Z.Y. Wang, J.F. Li, C. Zhao, X.L. Teng, K Li, One-step preparation of surface-modified particle electrodes via sol–gel method and its performance in fracturing flowback fluid treatment, Sci. Adv. Mater., 11 (2019) 93–98.
  67. T.T. Zhang, Y.J. Liu, L. Yang, W.P. Li, W.D. Wang, P. Liu, Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a threedimensional electrochemical reaction system, J. Cleaner Prod., 258 (2020) 120273, doi: 10.1016/j.jclepro.2020.120273.
  68. Y. Liu, Z.Y. Wu, P. Peng, H.B. Xie, X.Y. Li, J. Xu, W.H. Li, A pilotscale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater, J. Environ. Manage., 258 (2020) 110021, doi: 10.1016/j.jenvman.2019.110021.
  69. Z.Y. Wu, W.P. Zhu, Y. Liu, P. Peng, X.Y. Li, X.Q. Zhou, J. Xu, An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen, Chemosphere, 246 (2020) 125703, doi: 10.1016/j. chemosphere.2019.125703.
  70. Z.Y. Wu, Y. Liu, S.Y. Wang, P. Peng, X.Y. Li, J. Xu, W.H. Li, A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment, Bioresour. Technol., 284 (2019) 222–230.
  71. Z.Y. Wu, W.P. Zhu, Y. Liu, L.L. Zhou, P.X. Liu, J. Xu, An integrated biological-electrocatalytic process for highly-efficient treatment of coking wastewater, Bioresour. Technol., 339 (2021) 125584, doi:10.1016/j.biortech.2021.125584.
  72. H.M. Shi, Q.H. Wang, J. Ni, Y.S. Xu, N. Song, M. Gao, Highly efficient removal of amoxicillin from water
    by three-dimensional electrode system within granular activated carbon as particle electrode, J. Water Process Eng., 38 (2020) 101656, doi: 10.1016/j.jwpe.2020.101656.
  73. J.H. Zhan, Z.X. Li, G. Yu, X.J. Pan, J.L. Wang, W. Zhu, X. Han, Y.J. Wang, Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in-situ regenerate granular activated carbon particle electrodes, Sep Purif. Technol., 208 (2019) 12–18.
  74. B. Song, Z.Y. Wang, J.F. Li, M.Q. Luo, P.W. Cao, C. Zhang, Sulfur-zinc modified kaolin/steel slag: a particle electrode that efficiently degrades norfloxacin in a neutral/alkaline environment, Chemosphere, 284 (2021) 131328, doi: 10.1016/j.chemosphere.2021.131328.
  75. P.X. Liu, X. Wang, J. Lu, Y. Li, B. Hou, L. Feng, Removal of antipyrine through two-dimensional and three-dimensional electrolysis: comparison, modification, and improvement, Environ. Sci. Pollut. Res., 27 (2020) 40837–40847.
  76. Y. Feng, Z.J. Zhang, Y.H. Zhao, L. Song, X.W. Wang, S.M. Yang, Y.Y. Long, C.H. Zhao, L.P. Qiu, Accelerated Rhodamine B removal by enlarged anode electric biological (EAEB) with electro-biological particle electrode (EPE) made from steel converter slag (SCS), Bioresour. Technol., 283 (2019) 1–9.
  77. X.Y. Li, Y. Wu, W. Zhu, F.Q. Xue, Y. Qian, C.W. Wang, Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields, Electrochim. Acta, 220 (2016) 276–284.
  78. B. Song, Z.Y. Wang, J.F. Li, Y.N. Ma, Preparation and electrocatalytic properties of kaolin/steel slag particle electrodes, Catal. Commun., 148 (2021) 106177, doi: 10.1016/j.catcom.2020.106177.
  79. R. Shokoohi, D. Nematollahi, M.R. Samarghandi, G. Azarian, Z. Latifi, Optimization of three-dimensional electrochemical process for degradation of methylene blue from aqueous environments using central composite design, Environ. Technol. Innovation, 18 (2020) 100711, doi: 10.1016/j.eti.2020.100711.
  80. A. Bakalem, F. Bouhezila, O. Kitous, M. Drouiche, N. Mameri, Performance of a new electrochemical process using a threedimensional microelectrode reactor, Int. J. Environ. Sci. Technol., 18 (2021) 3035–3042.
  81. L. Liu, H.H. He, C. Zhang, Q. Wang, M.H. Zhou, Treatment of reverse osmosis concentrates using a three-dimensional electrode reactor, Curr. Org. Chem., 16 (2012) 2091–2096.
  82. S.M. Xie, M. Li, Y.X. Liao, Q. Qin, S.X. Sun, Y.H. Tan, In-situ preparation of biochar-loaded particle electrode and its application in the electrochemical degradation of 4-chlorophenol in wastewater, Chemosphere, 273 (2021) 128506, doi: 10.1016/j.chemosphere.2020.128506.
  83. Q.W. Fan, Y. Li, Y.X. Zhao, H.P Xu, L. Chen, D.L. Hua, Anaerobic digestion coupled with three-dimensional ironcarbon electrolysis for enhanced treatment of wood-vinegar wastewater and bacterial structure changes, J. Cleaner Prod., 267 (2020) 122095, doi: 10.1016/j.jclepro.2020.122095.
  84. Y.M. Zhang, Z. Chen, P.P. Wu, Y.X. Duan, L.C. Zhou, Y.X. Lai, F. Wang, S. Li, Three-dimensional heterogeneous electro-Fenton system with a novel catalytic particle electrode for bisphenol A removal, J. Hazard. Mater., 393 (2020) 120448, doi: 10.1016/j. jhazmat.2019.03.067.