1. M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev., 101 (2001) 1981–2017.
  2. F. Parrino, E. García-López, G. Marcì, L. Palmisano, V. Felice, I.N. Sora, L. Armelao, Cu-substituted lanthanum ferrite perovskites: preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation, J. Alloys Compd., 682 (2016) 686–694.
  3. F. Zurlo, E. Di Bartolomeo, A. D’Epifanio, V. Felice, I.N. Sora, L. Tortora, S. Licoccia, La0.8Sr0.2Fe0.8Cu0.2O3–δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3–δ electrolyte, J. Power Sources, 271 (2014) 187–194.
  4. W. Luo, L.H. Zhu, N. Wang, H.Q. Tang, M.J. Cao, Y.B. She, Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst, Environ. Sci. Technol., 44 (2010) 1786–1791.
  5. X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate, Chem. Eng. J., 193–194 (2012) 290–295.
  6. N. Türkten, I.N. Sora, A. Tomruk, M. Bekbölet, Photocatalytic degradation of humic acids using LaFeO3, Catalysts, 8 (2018), doi: 10.3390/catal8120630.
  7. K. Wang, H. Niua, J. Chen, J. Song, C. Mao, M. Zhang, Y. Gao, Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance, Appl. Surf. Sci., 404 (2017) 138–145.
  8. J. Faye, E. Guelou, J. Barrault, J.M. Tatibouet, S. Valange, LaFeO3 perovskite as new and performant catalyst for the wet peroxide oxidation of organic pollutants in ambient conditions, Top Catal., 52 (2009) 1211–1219.
  9. H.Y. Zhao, J.L. Cao, H.L. Lv, Y.B. Wang, G.H. Zhao, 3D nanoscale perovskite-based composite as Fenton-like system for efficient oxidative degradation of ketoprofen, Catal. Commun., 41 (2013) 87–90.
  10. K. Rusevova, R. Köferstein, M. Rosell, H.H. Richnow, F.-D. Kopinke, A. Georgi, LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions, Chem. Eng. J., 239 (2014) 322–331.
  11. N. Sora, D. Fumagalli, Fast photocatalytic degradation of pharmaceutical micropollutants and ecotoxicological effects, Environ. Sci. Pollut. Res., 24 (2017) 12556–12561.
  12. M.H. Kim, C.H. Hwang; S. Bin Kang, S. Kim, S.W. Park, Y.S. Yun, S.W. Won, Removal of hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine-polyvinyl chloride composite fiber, Chem. Eng. J., 280 (2015) 18–25.
  13. C.H. Neoh, C.Y. Lam, C.K. Lim, A. Yahya, H.H. Bay, Z. Ibrahim, Z.Z. Noor, Biodecolorization of recalcitrant dye as the sole source of nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes, Environ. Sci. Pollut. Res., 22 (2015) 11669–11678.
  14. L. Bilińska, M. Gmurek, S. Ledakowicz, Comparison between industrial and simulated textile wastewater treatment by AOPs-biodegradability, toxicity and cost assessment, Chem. Eng. J., 306 (2016) 550–559.
  15. A. Reife, H.S. Freeman, Environmental Chemistry of Dyes and Pigments, Wiley, New York, 1996, p. 329.
  16. H.S. Freeman, A. Reife, Dyes, Environmental Chemistry, Kirk-Othmer, Ed., Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, pp. 431–463.
  17. M. Bilal, T. Rasheed, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Toxicological assessment and UV/TiO2-based induced degradation profile of Reactive Black 5 dye, J. Environ. Manage., 61 (2018) 171–180.
  18. I. Grčić, S. Papić, D. Mesec, N. Koprivanac, D. Vujević, The kinetics and efficiency of UV assisted advanced oxidation of various types of commercial organic dyes in water, J. Photochem. Photobiol., A, 273 (2014) 49–58.
  19. H. Saroyan, D. Ntagiou, K. Rekos, E. Deliyanni, Reactive Black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide, Appl. Sci., 9 (2019) 2167, doi: 10.3390/app9102167.
  20. The Central Pollution Control Board (CPCB), Environmental Standards for Ambient Air, Automobiles, Fuels, Industries and Noise, CPCB-New Delhi, 2000, p. 119.
  21. United States Environmental Protection Agency (US EPA), Office of Wastewater Management, National Risk Management Research Laboratory, US Agency for International Development, Guideline-Water-Reuse, Washington, DC, 2012, p. 643.
  22. A.K. Pikaev, V.I. Zolotarevskii, Pulse radiolysis of aqueous solutions of sulfuric acid, Bull. Acad. Sci. USSR, Div. Chem. Sci., 16 (1967) 181–182.
  23. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  24. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  25. M. Yousefi, F. Ghanbari, M.A. Zazouli, S. Madihi-Bidgoli, Brilliant Blue FCF degradation by persulfate/zero valent iron: the effects of influencing parameters and anions, Desal. Water Treat., 70 (2017) 364–371.
  26. X. Ding, L. Gutierrez, J.P. Croue, M. Li, L. Wang, Y. Wang, Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: kinetics, mechanisms, and comparison, Chemosphere, 253 (2020) 126655, doi: 10.1016/j. chemosphere.2020.126655.
  27. M. Dogan, T. Öztürk, T. Ölmez-Hanci, I. Arslan-Alaton, Persulfate and hydrogen peroxide-activated degradation of Bisphenol A with nano-scale zero-valent iron and aluminum, J. Adv. Oxid. Technol., 19 (2016) 266–275.
  28. J. Yang, M. Zhu, D.D. Dionysiou, What is the role of light in persulfate-based advanced oxidation for water treatment?, Water Res., 189 (2021) 116627, doi: 10.1016/j.watres.2020.116627.
  29. J. Shore, Cellulosics Dyeing, The Society of Dyers and Colorists, Alden Press, Oxford, 1995, p. 408.
  30. I. Arslan-Alaton, A. Karatas, Ö. Pehlivan, O. Koba-Ucun, T. Ölmez-Hanci, Effect of UV-A-assisted iron-based and UV-C-driven oxidation processes on organic matter and antibiotic resistance removal in tertiary treated urban wastewater, Catal. Today, 361 (2020) 152–158.
  31. Q. Yang, Y. Ma, F. Chen, F. Yao, J. Sun, S. Wang, K. Yi, L. Hou, X. Li, D. Wang, Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water, Chem. Eng. J., 378 (2019) 122149, doi: 10.1016/j.cej.2019.122149.
  32. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, R.B. Rice, A.D. Baird, Eds., 22nd ed., American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington, D.C., 2012, p. 1496.
  33. I. Arslan Alaton, I. Akmehmet Balcioglu, Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5, J. Photochem. Photobiol., A, 141 (2001) 247–254.
  34. N.H. Ince, G. Tezcanli, Reactive dyestuff degradation by combined sonolysis and ozonation, Dyes Pigm., 49 (2001) 145–153.
  35. S. Li, L. Jing, W. Fu, L. Yang, B. Xin, H. Fu, Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation, Mater. Res. Bull., 42 (2007) 203–212.
  36. N. Yahya, F. Aziz, J. Jaafar, W.J. Lau, N. Yusof, W.N.W. Salleh, A.F. Ismail, M. Aziz, Impacts of annealing temperature on morphological, optical and photocatalytic properties of gelcombustion-derived LaFeO3 nanoparticles, Arabian J. Sci. Eng., 46 (2021) 6153–6165.
  37. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
  38. I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah,
    I. Khan, Review on Methylene blue: its properties, uses, toxicity and photodegradation, Water, 14 (2022) 242, doi: 10.3390/w14020242.
  39. S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity, Chem. Eng. J., 209 (2012) 420–428.
  40. L. Ju, Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles, J. Am. Ceram. Soc., 94 (2011) 3418–3424.
  41. N.C. Birben, E. Lale, R. Pelosato, N. Türkten, I.N. Sora, M. Bekbölet, Photocatalytic bactericidal performance of LaFeO3 under solar light in the presence of natural organic matter: spectroscopic and mechanistic evaluation, Water, 13 (2021), doi: 10.3390/w13192785.
  42. S.Y. Oh, S.G. Kang, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron, Sci. Total Environ., 408 (2010) 3464–3468.
  43. S. Zhang, S. Song, P. Gu, R. Ma, D. Wei, G. Zhao, T. Wen, R. Jehan, B. Hu, X. Wang, Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C3N4 for boosting bisphenol A degradation, J. Mater. Chem. A, 7 (2019) 5552–5560.
  44. K. Rusevova, F.D. Kopinke, A. Georgi, Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions - influence of Fe(II)/Fe(III) ratio on catalytic performance, J. Hazard. Mater., 241–242 (2012) 433–440.
  45. A. Kumar, M. Chandel, M.A. Sharma, M. Thakur, A. Kumar, D. Pathania, L. Singh, Robust visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: clozapine, J. Environ. Chem. Eng., 9 (2021) 106159, doi: 10.1016/j.jece.2021.106159.
  46. J. Jing, C. Cao, S. Ma, Z. Li, G. Qu, B. Xie, W. Jin, Y. Zhao, Enhanced defect oxygen of LaFeO3/GO hybrids in promoting persulfate activation for selective and efficient elimination of bisphenol A in food wastewater, Chem. Eng. J., 407 (2021) 126890, doi: 10.1016/j.cej.2020.126890.
  47. I. Arslan-Alaton, T. Ölmez-Hanci, T. Öztürk, Effect of inorganic and organic solutes on zero-valent
    aluminum-activated hydrogen peroxide and persulfate oxidation of bisphenol A, Environ. Sci. Pollut. Res., 25 (2018) 34938–34949.
  48. Ö. Tuna, S. Karadirek, E.B. Simsek, Deposition of CaFe2O4 and LaFeO3 perovskites on polyurethane filter:
    a new photocatalytic support for flowthrough degradation of tetracycline antibiotic, Environ. Res., 2022 (2005) 112389, doi: 10.1016/j.envres.2021.112389.
  49. R. Pelosato, V. Carrara, I.N. Sora, Enhanced photocatalytic degradation of ibuprofen in aqueous solution under visiblelight irradiation: effects of LaFeO3 and Cu/LaFeO3, Chem. Eng. Trans., 73 (2019) 181–186.
  50. T. Ölmez-Hanci, I. Arslan-Alaton, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chem. Eng. J., 224 (2013) 10–16.
  51. S. Giannakis, K.-Y. Andrew Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j.cej.2020.127083.