1. M.J. Wei, J.H. Wu, W.Q. Li, Q.X. Zhang, F.M. Su, Y.H. Wang, Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of Northwest China, Exposure Health, 14 (2022) 219–238.
  2. X.D. He, P.Y. Li, Y.J. Ji, Y.H. Wang, Z.M. Su, V. Elumalai, Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management, Exposure Health, 12 (2020) 355–368.
  3. S. Kapaj, H. Peterson, K. Liber, P. Bhattacharya, Human health effects from chronic arsenic poisoning—
    a review, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 41 (2006) 2399–2428.
  4. N. Lin, Medical Environmental Geochemistry, Jilin Science and Technology Press, 1991, pp. 186–201.
  5. S. Han, F. Zhang, H. Zhang, X. Jia, J. He, X. Li, Distribution characteristics and genetic analysis of high arsenic groundwater in north China, China Geol., 37 (2010) 747–753.
  6. H. Guo, Q. Guo, Y. Jia, Z. Liu, Y. Jiang, Chemical characteristics and formation process of high arsenic groundwater in different regions of China, J. Earth Sci. Environ., 35 (2013) 83–96.
  7. Z. Yang, H. Peng, X. Lu, Q. Liu, R. Huang, B. Hu, G. Kachanoski, M. Zuidhof, X. Le, Arsenic metabolites, including N-acetyl-4- hydroxy-m-arsanilic acid, in chicken litter from a roxarsonefeeding study involving 1600 chickens, Environ. Sci. Technol., 50 (2016) 6737–6743.
  8. D. Postma, F. Larsen, N.T.M. Hue, M.T. Duc, P.H. Viet, P.Q. Nhan, S. Jessen, Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling, Geochim. Cosmochim. Acta, 21 (2007) 5054–5071.
  9. S. Verma, A. Mukherjee, C. Mahanta, R. Choudhury, K. Mitra, Influence of geology on groundwater-sediment interactions in varied arsenic enriched tectono-morphic aquifers of the Brahmaputra River Basin, J. Hydrol., 540 (2016) 176–195.
  10. Y. Wang, C. Su, X. Xie, Study on arsenic abnormal in Datong Basin, Geol. China, 37 (2010) 771–780.
  11. Y. Jiang, H. Guo, Y. Jia, Y. Cao, C. Hu, Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia, Chem. Erde, 75 (2015) 197–205.
  12. X. Ren, P. Li, X. He, F. Su, V. Elumalai, Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China, Arch. Environ. Contam. Toxicol., 80 (2021) 74–91.
  13. J. Wu, P. Li, D. Wang, X. Ren, M. Wei, Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau, Hum. Ecol. Risk Assess.: An Int. J., 26 (2020) 1603–1621.
  14. P. Li, R. Tian, R. Liu, Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China, Exposure Health, 11 (2019) 81–94.
  15. J. Wu, P. Li, H. Qian, Z. Duan, X. Zhang, Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China, Arabian J. Geosci., 7 (2014) 3973–3982.
  16. A.I.A.S.S. Andrade, T.Y. Stigter, The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: insights from multivariate geostatistical modeling, Sci. Total Environ., 449 (2013) 37–51.
  17. H. Lin, Study on Chemical Characteristics and Changes of Greater in Jiyuan Basin, North China University of Water Resources and Hydropower, 2018.
  18. C. Zhang, J. He, X. Zhang, Z. Ni, Environmental characteristics and causes of high arsenic groundwater in the Pearl River Delta, Environ. Sci., 39 (2018) 3631–3639.
  19. S. Lu, Y. Deng, M. Zhang, H. Lu, X. Wang, R. Huo, Study on hydrochemical characteristics of high arsenic groundwater based on multiple statistical analysis — takes Hangjinhou Banner, Inner Mongolia as an example, Rural Water Resources and Hydropower in China, 12 (2014) 40–44 + 48.
  20. Q. Li, J. Zhou, Y. Zeng, Effects of nitrogens on the migration and enrichment of arsenic in the groundwater in the plain area of Kuitun River and Manas River basin, Environ. Chem., 36 (2017) 2227–2234.
  21. L. Wang, H. Liu, X. Xu, M. Su, F. Lin, Investigation report on chronic endemic arsenic poisoning in Kuitun reclamation area, Xinjiang, Chin. J. Region Epidemiol., 2 (1983) 71.
  22. J. Tong, C. Wei, H. Guo, Detection and health risk assessment of arsenic in crops in Hetao plain of Inner Mongolia autonomous region, Asian J. Ecotoxicol., 8 (2013) 426–434.
  23. Xinjiang Production and Construction Corps, Xinjiang Kuitun River Basin Planning Report, 2004.
  24. Y. Wang, C. Qiao, H. Zhang, Analysis of runoff characteristics of Kuitun River Basin under climate change, Water Conserv. Hydropower Technol., 2 (2020) 60–68.
  25. M. Mu, W. Wang, D. Du, S. Zaho, X. Qiao, Countermeasures about the development and utilization of the groundwater resources in Kuitun River valley in Xinjiang, Arid Resour. Environ., 21 (2007) 15–20.
  26. F. Tian, T. Zheng, Q. Li, Y. Deng, The vertical distribution of arsenic in quaternary sediments in Jianghan plain and its effect on arsenic concentration in groundwater, Geol. Sci. Technol. Inform., 37 (2018) 226–234.
  27. J. Huang, Q. Lin, Y. Fang, Y. Qian, H. Liu, R. Ma, H. Chen, Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China, Water, 11 (2019) 96, doi:10.3390/w11010096.
  28. X, Li, H. Wu, H. Qian, Y. Gao, Groundwater chemistry regulated by hydrochemical processes and geological structures: a case study in Tongchuan, China, Water, 10 (2018) 338, doi: 10.3390/w10030338.
  29. Ministry of Ecology and Environmental of China, Technical Specifications for Groundwater Environmental Monitoring of China HL/T164-2004, China Environmental Science Press, Beijing, China, 2004.
  30. Y. Jiang, H. Guo, Y. Jia, Y. Cao, C. Hu, Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia, Chem. Erde, 75 (2015) 197–205.
  31. Y. Zong, Principal component and cluster analysis were used to evaluate groundwater quality around agricultural processing enterprises, Anhui Agric. Sci. Bull., 24 (2018) 157–161.
  32. S.M. Yidana, Groundwater classification using multivariate statistical methods: Southern Ghana, Afr. Earth Sci., 57 (2010) 455–469.
  33. X. Zhang, Q. Wang, M. Yu, J. Wu, Application of multivariate statistical techniques to water quality monitoring, China Water Wastewater, 26 (2010) 120–126.
  34. K.J. Kim, J.T. Moon, S.H. Kim, K.S. Ko, Importance of surface geologic condition in regulating As concentration of groundwater in the alluvial plain, Chemosphere, 77 (2009) 478–484.
  35. D. Purushotham, M.R. Prakash, A.N. Rao, Groundwater depletion and quality deterioration due to environmental impacts in Maheshwaram watershed of R.R. district, AP (India), Environ. Earth Sci., 62 (2011) 1707–1721.
  36. Y. Li, X. Gao, X. Zhang, W. Luo, Geochemical characteristics of arsenic in groundwater and sediments in Yuncheng basin, Saf. Environ. Eng., 24 (2017) 68–74.
  37. X. Li, Geochemical Characteristics of Sediments in the Piedmont Plain of Hetao Basin and Their Significance in Controlling Groundwater Arsenic, China University of Geosciences, Beijing, 2018.
  38. Y. Luo, J. Li, P. Jiang, Y. Xing, Distribution, classification and cause analysis of geogenic high-arsenic groundwater in Kuitun, Xinjiang, Acta Sci. Circum., 37 (2017) 2897–2903.
  39. L. Zhang, W. Liu, T. Liu, M. Dong, Z. Yu, Based on principal component analysis, the quality evaluation model of Dongting biluochun was established, Food Res. Dev., 39 (2018) 15–22.
  40. C.A. Appelo, M.J. Van Der Weiden, C. Tournassat, L. Charlet, Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic, Environ. Sci. Technol., 14 (2002) 3096–3103.
  41. M. Xiao, W. Yang, X. Lü, Spatial variation and assessment of soil arsenic content in irrigating-agricultural fields of wolfberry in arid area of Qaidam Basin in China, Trans. CSAE, 30 (2014) 99–105.
  42. Y. Wang, C. Su, X. Xie, Z. Xie, Study on groundwater arsenic anomaly and its genesis in Datong basin, China Geol., 37 (2010) 771–781.
  43. H. Guo, D. Wen, Z. Liu, Y. Jia, Q. Guo, A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes, Appl. Geochem., 41 (2014) 196–217.
  44. L. Hong, Preliminary study on the disease and formation environment of high fluorine and high arsenic water in Chepaizi area, northern Kuitun, Xinjiang, Xinjiang Environ. Prot., 10 (1983) 22–28.
  45. J. Tong, H. Guo, C. Wei, Arsenic contamination of the soil-wheat system through irrigation with high arsenic groundwater in Inner Mongolia, China, Sci. Total Environ., 496 (2014) 479–487.
  46. H. Neidhardt, S. Norra, X. Tang, H. Guo, D. Stüben, Impact of irrigation with high arsenic burdened groundwater on the soil–plant system: results from a case study in the Inner Mongolia, China, Environ. Pollut., 163 (2012) 8–13.