1. P.J. Stuyfzand, Hydrochemistry and Hydrology of the Coastal Dune Area of the Western Netherlands, KIWA N.V. Research and Consultancy Division, Nieuwegein, The Netherlands, 1993.
  2. A. Firat Ersoy, H. Ersoy, Stuyfzand Hidrojeokimyasal Modelleme Sistemi: Gümüşhaciköy (Amasya) Akiferi Örneği, Jeoloji Mühendisliği Dergisi, 2008, pp. 37–51.
  3. S. El-Manharawy, A. Hafez, A new chemical classification system of natural waters for desalination and other industrial uses, Desalination, 156 (2003) 163–180.
  4. C. Lourenço, L. Ribeiro, J. Cruz, Classification of natural mineral and spring bottled waters of Portugal using principal component analysis, J. Geochem. Explor., 107 (2010) 362–372.
  5. V.H. McNeil, M.E. Cox, M. Preda, Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia, J. Hydrol., 310 (2005) 181–200.
  6. Y.H. Liu, K. Zhang, Z.J. Li, Z.Y. Liu, J.F. Wang, P.N. Huang, A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds, J. Hydrol. (Amsterdam), 590 (2020) 125440, doi: 10.1016/j.jhydrol.2020.125440.
  7. K. Yekdeli Kermanshahi, R. Tabaraki, H. Karimi, M. Nikorazm, S. Abbasi, Classification of Iranian bottled waters as indicated by manufacturer’s labellings, Food Chem., 120 (2010) 1218–1223.
  8. H.G.M. Eggenkamp, J.M. Marques, A comparison of mineral water classification techniques: occurrence and distribution of different water types in Portugal (including Madeira and the Azores), J. Geochem. Explor., 132 (2013) 125–139.
  9. Y. Shan, J.J. Shi, Data Mining for Source Apportionment of Trace Elements in Water and Solid Matrix, M.A. Murillo- Tovar, H. Saldarriaga-Noreña, A. Saeid, Eds., Trace Metals in the Environment – New Approaches and Recent Advances, IntechOpen, 2019. Available at: intechopen.88818, ISBN 978-1-83880-332-2.
  10. C. Lourenço, L. Ribeiro, J. Cruz, Classification of natural mineral and spring bottled waters of Portugal using principal component analysis, J. Geochem. Explor., 107 (2010) 362–372.
  11. G. Ragno, M. De Luca, G. Ioele, An application of cluster analysis and multivariate classification methods to spring water monitoring data, Microchem. J., 87 (2007) 119–127.
  12. Y.-S. Bong, J.-S. Ryu, K.-S. Lee, Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions, Anal. Chim. Acta, 631 (2009) 189–195.
  13. N. Grošelj, G. van der Veer, M. Tušar, M. Vračko, M. Novič, Verification of the geological origin of bottled mineral water using artificial neural networks, Food Chem., 118 (2010) 941–947.
  14. I.C. Nnorom, U. Ewuzie, S.O. Eze, Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria, Heliyon, 5 (2019) e01123, doi:10.1016/j.heliyon.2019.e01123.
  15. H. Wang, Z.-h. Liu, Z. Tang, J. Zhang, H. Yin, Z. Dang, P.-x. Wu, Y. Liu, Bisphenol analogues in Chinese bottled water: quantification and potential risk analysis, Sci. Total Environ., 713 (2020) 136583, doi:10.1016/j.scitotenv.2020.136583.
  16. X.-j. Zhou, J. Wang, H.-y. Li, H.-m. Zhang, H. Jiang, D.L. Zhang, Microplastic pollution of bottled water in China, J. Water Process Eng., 40 (2021) 101884, doi: 10.1016/j.jwpe.2020.101884.
  17. X.J. Wang, Y. Zhang, M.H. Luo, K. Xiao, Q.Q. Wang, Y. Tian, W.H. Qiu, Y. Xiong, C.M. Zheng, H.L. Li, Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area, Sci. Total Environ., 763 (2021) 144616, doi: 10.1016/j. scitotenv.2020.144616.
  18. Q. Zhang, X.J. Liang, C.L. Xiao, The hydrogeochemical characteristic of mineral water associated with
    water-rock interaction in Jingyu County, China, Procedia Earth Planet. Sci., 17 (2017) 726–729.
  19. M.J. Canto Machado, Águas minerais: Sua exploração industrial. jornadas hispano-lusas sobre as águas subterrâneas no noroeste da Península Ibérica, Corunha. Inst. Geol. e Mineiro de Espanha, Madrid, 2000,
    pp. 353–367.
  20. C.K. Hwang, J.-M. Cha, K.-W. Kim, H.-K. Lee, Application of multivariate statistical analysis and a geographic information system to trace element contamination in the Chungnam coal mine area, Korea, Appl. Geochem., 16 (2001) 1455–1464.
  21. K.P. Singh, A. Malik, D. Mohan, S. Sinha, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study, Water Res., 38 (2004) 3980–3992.
  22. P. Liu, N. Hoth, C. Drebenstedt, Y.J. Sun, Z.M. Xu, Hydrogeochemical paths of multi-layer groundwater system in coal mining regions — using multivariate statistics and geochemical modeling approaches, Sci. Total Environ., 601–602 (2017) 1–14.
  23. C. Güler, M. Ali Kurt, M. Alpaslan, C. Akbulut, Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques, J. Hydrol., 414–415 (2012) 435–451.
  24. C. Güler, G.D. Thyne, J.E. McCray, K.A. Turner, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data, Hydrogeol. J., 10 (2002) 455–474.
  25. A. Sako, O. Bamba, A. Gordio, Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, Central Burkina Faso, J. Geochem. Explor., 170 (2016) 58–71.
  26. J.E. Cortes, L.F. Muñoz, C.A. Gonzalez, J.E. Niño, A. Polo, A. Suspes, S.C. Siachoque, A. Hernández, H. Trujillo, Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia — a multivariate statistical approach, J. Hydrol., 539 (2016) 113–124.
  27. V. Carucci, M. Petitta, R. Aravena, Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling, Appl. Geochem., 27 (2012) 266–280.
  28. H. Chihi, G. de Marsily, H. Belayouni, H. Yahyaoui, Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: example of the “Jeffara de Medenine” system, south–east Tunisia, J. Hydrol., 4 (2015) 410–430.