References

  1. N. Al-Bastaki, Removal of methyl orange dye and Na2SO4 salt from synthetic waste water using reverse osmosis, Chem. Eng. Process. Process Intensif., 43 (2004) 1561–1567.
  2. F. Zhang, A. Yediler, X. Liang, A. Kettrup, Effects of dye additives on the ozonation process and oxidation
    by-products: a comparative study using hydrolyzed C.I. Reactive Red 120, Dyes Pigm., 60 (2004) 1–7.
  3. V. Golob, A. Vinder, M. Simonic, Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents, Dyes Pigm., 67 (2005) 93–97.
  4. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem., 97 (2021) 111–128.
  5. S. Belekbir, M. El Azzouzi, A. El Hamidi, L. Rodríguez-Lorenzo, J.A. Santaballa, M. Canle, Improved photocatalyzed degradation of phenol, as a model pollutant, over metal-impregnated nanosized TiO2, Nanomaterials, 10 (2020) 996–1022.
  6. A. Akbari, Z. Sabouri, H.A. Hosseini, A. Hashemzadeh, M. Khatami, M. Darroudi, Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments, Inorg. Chem. Commun., 115 (2020) 107867, doi: 10.1016/j.inoche.2020.107867.
  7. S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for wastewater treatment, Sep. Purif. Technol., 248 (2020) 117062, doi: 10.1016/j.seppur.2020.117062.
  8. Z. Sabouri, M. Sabouri, M.S. Amiri, M. Khatami, M. Darroudi, Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties, Mater. Technol., 37 (2022) 555–568.
  9. K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review, Sustainable Mater. Technol., 23 (2020) 140–152.
  10. A. Ghaderi, S. Abbasi, F. Farahbod, Synthesis, characterization and photocatalytic performance of modified ZnO nanoparticles with SnO2 nanoparticles, Mater. Res. Express, 5 (2018) 1–37.
  11. Y. Zhang, ZnO Nanostructures: Fabrication and Applications, Royal Society of Chemistry, Cambridge, 2017.
  12. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO, Solid State Sci., 13 (2011) 923–928.
  13. E.U. Umukoro, S.S. Madyibi, M.G. Peleyeju, L. Tshwenya, E.H. Viljoen, J.C. Nagila, O.A. Arotiba, Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water, Solid State Sci., 74 (2017) 118–124.
  14. S. Sharma, S. Basu, Visible-light-driven efficient photocatalytic abatement of recalcitrant pollutants by centimeter-length MoO3/SiO2 monoliths with long service life, Appl. Mater. Today, 23 (2021) 101033, doi:10.1016/j.apmt.2021.101033.
  15. L. Dashairya, S. Sharma, A. Rathi, P. Saha, S. Basu, Solarlight-driven photocatalysis by Sb2S3/carbon based composites towards degradation of noxious organic pollutants, Mater. Chem. Phys., 273 (2021) 125120, doi:10.1016/j. matchemphys.2021.125120.
  16. A. Kundu, S. Sharma, S. Basu, Modulated BiOCl nanoplates with porous g-C3N4 nanosheets for photocatalytic degradation of color/colorless pollutants in natural sunlight, J. Phys. Chem. Solids, 154 (2021) 110064, doi:10.1016/j.jpcs.2021.110064.
  17. D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi, 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants, J. Environ. Manage., 274 (2020) 111208, doi: 10.1016/j.jenvman.2020.111208.
  18. A.M. Oves, R. Kumar, M.A. Barak, Fabrication of ZnOZnS@ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater, Int. Biodeterior. Biodegrad., 119 (2017) 66–77.
  19. A. Elschne, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter, Principles and Applications of an Intrinsically Conductive Polymer, CRC Press: Taylor and Francis Group, Boca Raton FL, 2010.
  20. L. Zhou, Z. Han, G.D. Li, Z. Zhao, Template-free synthesis and photocatalytic activity of hierarchical hollow ZnO microspheres composed of radially aligned nanorods, J. Phys. Chem. Solids, 148 (2021) 109719, doi: 10.1016/j.jpcs.2020.109719.
  21. T. Zou, C. Wang, R. Tanc, W. Song, Y. Cheng, Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light, J. Hazard. Mater., 338 (2017) 276–286.
  22. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes, J. Mol. Liq., 222 (2016) 1029–1033.
  23. R. Singh, R.B. Choudhary, Ag/AgCl sensitized n-type ZnO and p-type PANI composite as an active layer for hybrid solar cell application, Optik, 225 (2021) 165766, doi: 10.1016/j. ijleo.2020.165766.
  24. H.V. Vasei, S.M. Masoudpanah, M. Habibollahzadeh, Different morphologies of ZnO via solution combustion synthesis: the role of fuel, Mater. Res. Bull., 125 (2020) 110784, doi: 10.1016/j.materresbull.2020.110784.
  25. G.X. Du, Q. Xue, H. Ding, Z. Li, Mechanochemical effects of ZnO powder in a wet super-fine grinding system as indicated by instrumental characterization, Int. J. Miner. Process., 141 (2015) 15–19.
  26. Y. Kadri, E. Srasra, I. Bekri-Abbess, P. Herrasti, Facile and ecofriendly synthesis of polyaniline/ZnO composites for corrosion protection of AA-2024 aluminium alloy, J. Electroanal. Chem., 893 (2021) 115335, doi:10.1016/j.jelechem.2021.115335.
  27. S.P. Armes, J.F. Miller, Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate, Synth. Met., 22 (1988) 385–393.
  28. S.A. Khayyat, M.S. Akhtar, A. Umar, ZnO nanocapsules for photocatalytic degradation of thionine, Mater. Lett., 81 (2012) 239–241.
  29. A. Becheri, M. Durr, P.L. Nostro, P. Baglioni, synthesis and characterization of zinc oxide nanoparticles: application of textiles as UV-absorbers, J. Nanopart. Res., 10 (2008) 679–689.
  30. H. Abdullah, N.P. Ariyanto, S. Shaari, B. Yuliarto, S. Junaidi, Influence of structural and chemical properties on electron transport in mesoporous ZnO-based dye-sensitized solar cell, Am. J. Eng. Appl. Sci., 2 (2009) 236–240.
  31. K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, S. Fujihara, Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions, J. Sol-Gel Sci. Technol., 39 (2006) 63–72.
  32. V. Eskizeybek, F. Sarı, H. Gulce, A. Gulce, A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Appl. Catal., B, 119–120 (2012) 197–206.
  33. M. Alam, N.M. Alandis, A.A. Ansari, M.R. Shaik, Optical and electrical conducting properties of polyaniline/tin oxide nanocomposite, J. Nanomater., 6 (2013) 1–5.
  34. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods, Prog. Nat. Sci.: Mater. Int., 22 (2012) 273–280.
  35. K.G.B. Alves, J.F. Felix, E.F. de Melo, C.G. dos Santos, C.A.S. Andrade, C.P. de Melo, Characterization of ZnO/polyaniline nanocomposites prepared by using surfactant solutions as polymerization media, J. Appl. Polym. Sci., 125 (2011) 141–147.
  36. S. Rajamanickam, S.M. Mohammad, Z. Hassan, Effect of zinc acetate dihydrate concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method, Colloid Interface Sci. Commun., 38 (2020) 100312, doi: 10.1016/j. colcom.2020.100312.
  37. R. Nosrati, A. Olad, R. Maramifar, Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation, Environ. Sci. Pollut. Res., 19 (2012) 2291–2299.
  38. D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, Defectrelated photoluminescence and photocatalytic properties of porous ZnO nanosheets, J. Mater. Chem. A, 2 (2014) 15377–15388.
  39. Z. Pei, L. Ding, M. Lu, Z. Fan, S. Weng, J. Hu, P. Liu, Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability, J. Phys. Chem. C, 118 (2014) 9570–9577.
  40. X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, X. Wang, Nanostructured ternary composites of
    graphene/Fe2O3/polyaniline for highperformance supercapacitors, J. Mater. Chem., 22 (2012) 16844–16850.
  41. N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, High-energy ball milling technique for ZnO nanoparticles as antibacterial material, Int. J. Nanomed., 6 (2011) 863–869.
  42. L. Yu, W. Guo, M. Sun, J. He, Effect of grinding on the photocatalytic activity of commercial ZnO powder, Adv. Mater. Res., 785–786 (2013) 498–501.
  43. I. Sedenkova, M. Trchova, J. Stejskal, Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water-FTIR and Raman spectroscopic studies, Polym. Degrad. Stab., 93 (2008) 2147–2157.
  44. S. Abbasi, M.S. Ekrami-Kakhki, The influence of ZnO nanoparticles amount on the optimisation of photo degradation of methyl orange using decorated MWCNTs, Prog. Ind. Ecol., 13 (2019) 3–15.
  45. S. Abbasi, Adsorption of dye organic pollutant using magnetic ZnO embedded on the surface of graphene oxide, J. Inorg. Organomet. Polym. Mater., 30 (2020) 1924–1934.
  46. M. Wondwossen, Y. Op, K. Tesfahun, Photocatalytic removal of methyl orange dye by polyaniline modified ZnO using visible radiation, Sci. Technol. Arts Res. J., 2 (2014) 93–102.
  47. S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017) 1–15, doi: 10.1177/0263617417698704.
  48. H.K. Farag, R.M.M. Aboelenin, N.A. Fathy, Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites, Asia-Pac. J. Chem. Eng., 12 (2017) 4–12.
  49. J. Han, H.Y. Zeng, S. Xu, C.R. Chen, X.J. Liu, Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange, Appl. Catal. A, 527 (2016) 72–80.