References

  1. M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, S. Sharil, S.S. Abu Amr, Evaluation quality of desalinated water derived from inclined copper-stepped solar still, Desal. Water Treat., 131 (2018) 83–95.
  2. Y. Wu, Z. Zhang, P. He, H. Ren, N. Wei, F. Zhang, H. Cheng, Q. Wang, Membrane fouling in a hybrid process of enhanced coagulation at high coagulant dosage and cross-flow ultrafiltration for deinking wastewater tertiary treatment, J. Cleaner Prod., 230 (2019) 1027–1035.
  3. K.E. Lee, N. Morad, T.T. Teng, B.T. Poh, Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review, Chem. Eng. J., 203 (2012) 370–386.
  4. K.E. Lee, M.M. Hanafiah, A.A. Halim, M.H. Mahmud, Primary treatment of dye wastewater using Aloe vera-aided aluminium and magnesium hybrid coagulants, Procedia Environ. Sci., 30 (2015) 56–61.
  5. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  6. O.S. Amuda, A.O. Ibrahim, Industrial wastewater treatment using natural material as adsorbent, Afr. J. Biotechnol., 5 (2006) 1483–1487.
  7. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  8. N. Meunier, P. Drogui, C. Montané, R. Hausler, G. Mercier, J.-F. Blais, Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate, J. Hazard. Mater., 137 (2006) 581–590.
  9. G. Wu, Z. Li, Y. Huang, F. Zan, J. Dai, J. Yao, B. Yang, G. Chen, L. Lei, Electrochemically assisted sulfate reduction autotrophic denitrification nitrification integrated (e-SANI®) process for high-strength ammonium industrial wastewater treatment, Chem. Eng. J., 381 (2020) 122707, doi: 10.1016/j.cej.2019.122707.
  10. M. Kumari, S.K. Gupta, A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water, J. Cleaner Prod., 244 (2020) 118899, doi:10.1016/j.jclepro.2019.118899.
  11. A. Aghababai Beni, A. Esmaeili, Y. Behjat, Invent of a simultaneous adsorption and separation process based on dynamic membrane for treatment Zn(II), Ni(II) and, Co(II) industrial wastewater, Arabian J. Chem., 14 (2021) 103231, doi: 10.1016/j.arabjc.2021.103231.
  12. P.J.M. Martins, P.M. Reis, R.C. Martins, L.M. Gando-Ferreira, R.M. Quinta-Ferreira, Iron recovery from the Fenton’s treatment of winery effluent using an ion-exchange resin, J. Mol. Liq., 242 (2017) 505–511.
  13. M.A.N. Camacho, A.I.G. López, A. Martinez-Ferez, J.M. Ochando-Pulido, Increasing large-scale feasibility of twophase olive-oil washing wastewater treatment and phenolic fraction recovery with novel ion exchange resins, Chem. Eng. Process. Process Intensif., 164 (2021) 108416, doi: 10.1016/j.cep.2021.108416.
  14. G. Han, Y. Du, Y. Huang, S. Yang, W. Wang, S. Su, B. Liu, Efficient removal of hazardous benzohydroxamic acid (BHA) contaminants from the industrial beneficiation wastewaters by facile precipitation flotation process, Sep. Purif. Technol., 279 (2021) 119718, doi: 10.1016/j.seppur.2021.119718.
  15. P. Ostermeyer, L. Bonin, K. Folens, F. Verbruggen, C. García-Timermans, K. Verbeken, K. Rabaey, T. Hennebel, Effect of speciation and composition on the kinetics and precipitation of arsenic sulfide from industrial metallurgical wastewater, J. Hazard. Mater., 409 (2021) 124418, doi: 10.1016/j. jhazmat.2020.124418.
  16. Y. Jiao, L. Liu, Q. Zhang, M. Zhou, Y. Zhang, Treatment of reverse osmosis concentrate from industrial coal wastewater using an electro-peroxone process with a natural air diffusion electrode, Sep. Purif. Technol., 279 (2021) 119667, doi: 10.1016/j. seppur.2021.119667.
  17. T.S. de A. Lopes, R. Heßler, C. Bohner, G.B. Athayde Junior, R.F. de Sena, Pesticides removal from industrial wastewater by a membrane bioreactor and post-treatment with either activated carbon, reverse osmosis or ozonation, J. Environ. Chem. Eng., 8 (2020) 104538, doi: 10.1016/j.jece.2020. 104538.
  18. M.S.S. Abujazar, S.U. Karaağaç, S.S. Abu Amr, M.Y.D. Alazaiza, M.J. Bashir, Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: a review, J. Cleaner Prod., 345 (2022) 131133, doi: 10.1016/j.jclepro.2022.131133.
  19. M.I. Ejimofor, I.G. Ezemagu, M.C. Menkiti, Biogas production using coagulation sludge obtained from paint wastewater decontamination: characterization and anaerobic digestion kinetics, Curr. Res. Green Sustainable Chem., 3 (2020) 100024, doi: 10.1016/j.crgsc.2020.100024.
  20. Z.Z. Abidin, N. Ismail, R. Yunus, I.S. Ahamad, A. Idris, A preliminary study on Jatropha curcas as coagulant in wastewater treatment, Environ. Technol., 32 (2011) 971–977.
  21. K.P.Y. Shak, T.Y. Wu, Coagulation–flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: treatment efficiencies and flocs characterization, Chem. Eng. J., 256 (2014) 293–305.
  22. A.J. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino, G. Dotro, E. Cartmell, P. Campo, Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater, Clean – Technol. Environ. Policy, 20 (2018) 393–402.
  23. P. Vega Andrade, C.F. Palanca, M.A.C. de Oliveira, C.Y.K. Ito, A.G. dos Reis, Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: physicochemical, cytotoxicity and bacterial load evaluation, J. Water Process Eng., 40 (2021) 101859, doi: 10.1016/j.jwpe.2020.101859.
  24. H. Guven, R.K. Dereli, H. Ozgun, M.E. Ersahin, I. Ozturk, Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics, Prog. Energy Combust. Sci., 70 (2019) 145–168.
  25. H. Patel, R.T. Vashi, Comparison of naturally prepared coagulants for removal of COD and color from textile wastewater, Global Nest J., 15 (2013) 522–528.
  26. L. Gayathri, Treatment of dairy wastewater by using natural coagulants, Int. Res. J. Eng. Sci., 3 (2017) 81–85.
  27. M. Dehghani, M.H. Alizadeh, The effects of the natural coagulant Moringa oleifera and alum in wastewater treatment at the Bandar Abbas Oil Refinery, Environ. Health Eng. Manage., 3 (2016) 225–230.
  28. G.L. Muniz, A.C. Borges, T.C.F. da Silva, Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation, J. Water Process Eng., 37 (2020) 101453, doi: 10.1016/j.jwpe.2020.101453.
  29. M.B. Fard, D. Hamidi, K. Yetilmezsoy, J. Alavi, F. Hosseinpour, Utilization of Alyssum mucilage as a natural coagulant in oilysaline wastewater treatment, J. Water Process Eng., 40 (2021) 101763, doi:10.1016/j.jwpe.2020.101763.
  30. W.L. Ang, A.W. Mohammad, State of the art and sustainability of natural coagulants in water and wastewater treatment, J. Cleaner Prod., 262 (2020) 121267, doi: 10.1016/j.jclepro.2020.121267.
  31. D. Shruthi Keerthi, M. Mukunda Vani, Optimization studies on decolorization of textile wastewater using natural coagulants, Mater. Today: Proc., 57 (2022) 1546–1552.
  32. T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  33. J. del Real-Olvera, E. Rustrian-Portilla, E. Houbron, F.J. Landa-Huerta, Adsorption of organic pollutants from slaughterhouse wastewater using powder of Moringa oleifera seeds as a natural coagulant, Desal. Water Treat., 57 (2016) 9971–9981.
  34. A. Hariz Amran, N. Syamimi Zaidi, K. Muda, L. Wai Loan, Effectiveness of natural coagulant in coagulation process: a review, Int. J. Eng. Technol., 7 (2018) 34, doi: 10.14419/ijet. v7i3.9.15269.
  35. A. Ahmad, S.R.S. Abdullah, H.A. Hasan, A.R. Othman, N. ’Izzati Ismail, Plant-based versus metal-based coagulants in aquaculture wastewater treatment: effect of mass ratio and settling time, J. Water Process Eng., 43 (2021) 102269, doi: 10.1016/j.jwpe.2021.102269.
  36. S. Veli, A. Arslan, M. Isgoren, D. Bingol, D. Demiral, Experimental design approach to COD and color removal of landfill leachate by the electrooxidation process, Environ. Challenges, 5 (2021) 100369, doi:10.1016/j.envc.2021.100369.
  37. H. Salehizadeh, S.A. Shojaosadati, Extracellular biopolymeric flocculants Recent trends and biotechnological importance, Biotechnol. Adv., 19 (2001) 371–385.
  38. F.V. Adams, A.F. Mulaba-Bafubiandi, Application of rice hull ash for turbidity removal from water, Phys. Chem. Earth., 72–75 (2014) 73–76.
  39. N. He, Y. Li, J. Chen, S. Lun, Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum, Biochem. Eng. J., 11 (2002) 137–148.
  40. S. Vishali, R. Karthikeyan, Cactus opuntia (ficus - indica): an ecofriendly alternative coagulant in the treatment of paint effluent, Desal. Water Treat., 56 (2015) 1489–1497.
  41. B. Kakoi, J.W. Kaluli, P. Ndiba, G. Thiong’o, Banana pith as a natural coagulant for polluted river water, Ecol. Eng., 95 (2016) 699–705.
  42. B. Ramavandi, S. Farjadfard, Removal of chemical oxygen demand from textile wastewater using a natural coagulant, Korean J. Chem. Eng., 31 (2014) 81–87.
  43. M. Besharati Fard, D. Hamidi, J. Alavi, R. Jamshidian, A. Pendashteh, S.A. Mirbagheri, Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: kinetic study, process optimization, and modeling, Ind. Crops Prod., 163 (2021) 113326, doi: 10.1016/j.indcrop.2021.113326.
  44. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2 (2008) 2121–2134.
  45. G. Palma, Removal of metal ions by modified Pinus radiata bark and tannins from water solutions, Water Res., 37 (2003) 4974–4980.
  46. P. Scho, D.M. Mbugua, A.N. Pell, Analysis of condensed tannins: a review, Anim. Feed Sci. Technol., 91 (2001) 21–40.
  47. A.S. Mangrich, M.E. Doumer, A.S. Mallmannn, C.R. Wolf, Green chemistry in water treatment: use of coagulant derived from acacia mearnsii tannin extracts, Rev. Virtual Química, 6 (2014) 2–15.
  48. T.J. Kim, J.L. Silva, M.K. Kim, Y.S. Jung, Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing, Food Chem., 118 (2010) 740–746.
  49. B. Zhang, H. Su, X. Gu, X. Huang, H. Wang, Effect of structure and charge of polysaccharide flocculants on their flocculation performance for bentonite suspensions, Colloids Surf., A, 436 (2013) 443–449.
  50. K. Okaiyeto, U. Nwodo, L. Mabinya, A. Okoh, Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo, Int. J. Environ. Res. Public Health, 10 (2013) 5097–5110.
  51. L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 26 (2010) 136–138.
  52. D. Zhang, Z. Hou, Z. Liu, T. Wang, Experimental research on Phanerochaete chrysosporium as coal microbial flocculant, Int. J. Min. Sci. Technol., 23 (2013) 521–524.
  53. U.U. Nwodo, A.I. Okoh, Characterization and flocculation properties of biopolymeric flocculant (glycosaminoglycan) produced by Cellulomonas sp. Okoh, J. Appl. Microbiol., 114 (2013) 1325–1337.