References

  1. ANVISA – Resolução da Diretoria Colegiada – RDC Nº 200, DE 26 DE DEZEMBRO DE 2017, Ministério da Saúde – MS, Agência Nacional de Vigilância Sanitária – ANVISA. Available at: http://antigo.anvisa.gov.br/ documents/10181/3836387/%283%29RDC_200_2017_COMP. pdf/6316bee6-095d-426b-9398-6b1f659078b5 (Accessed April 2020).
  2. K. Kümmerer, Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources--a review, Chemosphere, 45 (2001) 957–969.
  3. T.A.D. Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environmentglobal occurrences and perspectives, Environ. Toxicol. Chem., 35 (2015) 823–835.
  4. S. González-Alonso, L.M. Merino, S. Esteban, M.L. de Alda, D. Barceló, J.J. Durán, J. López-Martínez, J. Aceña,
    S. Pérez, N. Mastroianni, A. Silva, M. Catalá, Y. Valcárcel, Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region, Environ. Pollut., 229 (2017) 241–254.
  5. K.V. Thomas, K.H. Langford, Green and Sustainable Pharmacy, Springer Berlin Heidelberg, Berlin, 2010, pp. 211–223.
  6. C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece, J. Hazard. Mater., 179 (2010) 804–817.
  7. D. Taylor, T. Senac, Human pharmaceutical products in the environment – the “problem” in perspective, Chemosphere, 115 (2014) 95–99.
  8. D.R.S. Lima, M.D. Tonucci, M. Libânio, S.F. Aquino, Pharmaceuticals and endocrine disrupting compounds in Brazilian waters: occurrence and removal techniques, Eng. Sanit. Ambient., 2 (2017) 1043–1054.
  9. P. McGettingan, D. Henry, Use of non-steroidal antiinflammatory drugs that elevate cardiovascular risk:
    an examination of sales and essential medicines lists in low-, middle-, and high-income countries, PLoS Med., 10 (2013) e1001388, doi: 10.1371/journal.pmed.1001388.
  10. L. Lonappan, S.L. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Diclofenac and its transformation products: environmental occurrence and toxicity - a review, Environ. Int., 96 (2016) 127–138.
  11. S.E. Owumi, U.J. Dim, Biochemical alterations in diclofenactreated rats: effect of selenium on oxidative stress, inflammation, and hematological changes, Toxicol. Res. Appl., (2019), doi: 10.1177/2397847319874359.
  12. M. Syed, C. Skonberg, S.H. Hansen, Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: possible role in drug induced liver injury (DILI), Toxicol. in Vitro, 31 (2016) 93–102.
  13. M. Schmidt, H.T. Sørensen, L. Pedersen, Diclofenac use and cardiovascular risks: series of nationwide cohort studies, BMJ, (2018) 362, doi: 10.1136/bmj.k3426.
  14. J. Lindsay Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A.A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 42 (2004) 630–633.
  15. L. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 76 (2006) 122–159.
  16. D. Ogada, P. Shaw, R.L. Beyers, R. Buij, C. Murn, J.M. Thiollay, C.M. Beale, R.M. Holdo, D. Pomeroy, N. Baker,
    S.C. Krüger, A. Botha, M.Z. Virani, A. Monadjem, A.R.E. Sinclair, Another continental vulture crisis: Africa’s vultures collapsing toward extinction, Conserv. Lett., 9 (2016) 89–97.
  17. European Commission – Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. http://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32013L0039&from=EN (Accessed October 2019).
  18. Y. Praveenkumarreddy, K. Vimalkumar, B.R. Ramaswamy, V. Kumar, R.K. Singhal, H. Basu, C.M. Gopal,
    K.E. Vandana, K. Bhat, H.N. Udayashankar, K. Balakrishna, Assessment of non-steroidal anti-inflammatory drugs from selected wastewater treatment plants of Southwestern India, Emerging Contam., 7 (2021) 43–51.
  19. M.J. McKie, S.A. Andrews, R.C. Andrews, Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: a pilotscale approach, Sci. Total Environ., 544 (2016) 10–17.
  20. E.S. Rigobello, A.D.B. Dantas, L. Di Bernardo, E.M. Vieira, Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration, Chemosphere, 92 (2013) 184–191.
  21. J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287.
  22. W.T. Vieira, M.B. de Farias, M.P. Spaolonzi, M.G.C. da Silva, M.G.A. Vieira, Endocrine-disrupting compounds: occurrence, detection methods, effects and promising treatment pathways—a critical review, J. Environ. Chem. Eng., 9 (2021) 104558, doi: 10.1016/j.jece.2020.104558.
  23. P. Westerhoff, Y. Yoon, S.A. Snyder, E.C. Wert, Fate of endocrinedisruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 39 (2005) 6649–6663.
  24. Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products, J. Membr. Sci., 270 (2006) 88–100.
  25. D. Krajišnik, A. Daković, A. Malenović, M. Milojević-Rakić, V. Dondur, Ž. Radulović, J. Milić, Investigation of adsorption and release of diclofenac sodium by modified zeolites composites, Microporous Mesoporous Mater., 167 (2013) 94–101.
  26. J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán, J. García, Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon, Chem. Eng. J., 240 (2014) 443–453.
  27. V. Rakić, V. Rac, M. Krmar, O. Otman, A. Auroux, The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons, J. Hazard. Mater., 282 (2015) 141–149.
  28. M.A. Rodrigo, O. Scaldione, C.A. Martinez-Huitle, Electrochemical Water and Wastewater Treatment, Butterworth-Heinemann, Holland, 2018.
  29. F. Cao, M. Zhang, S. Yuan, J. Feng, Q. Wang, W. Wang, Z. Hu, Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification, Environ. Sci. Pollut. Res., 23 (2016) 12303–12311.
  30. M. Kråkström, S. Saeid, P. Tolvanen, N. Kumar, T. Salmi, L. Kronberg, P. Eklund, Identification and quantification of transformation products formed during the ozonation of the non-steroidal
    anti-inflammatory pharmaceuticals ibuprofen and diclofenac, Ozone: Sci. Eng., The J. Int. Ozone Assoc., 44 (2021) 157–171.
  31. M.H. Plumlee, B.D. Stanford, J.-F. Debroux, D. Cory Hopkins, S.A. Snyder, Costs of advanced treatment in water reclamation, Ozone: Sci. Eng., The J. Int. Ozone Assoc., 5 (2014) 485–495.
  32. S. de Boer, J. González-Rodríguez, J.J. Conde, M.T. Moreira, Benchmarking tertiary water treatments for the removal of micropollutants and pathogens based on operational and sustainability criteria, J. Water Process Eng., 46 (2022) 102587, doi: 10.1016/j.jwpe.2022.102587.
  33. V. Sundaram, K. Pagilla, T. Guarin, L. Li, R. Marfil-Vega, Z. Bukhari, Extended field investigations of
    ozone-biofiltration advanced water treatment for potable reuse, Water Res., 172 (2020) 115513, doi:10.1016/j.watres.2020.115513.
  34. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J., 248 (2014) 191–199.
  35. N. Suriyanon, P. Punyapalakul, C. Ngamcharussrivichai, Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials, Chem. Eng. J., 214 (2013) 208–218.
  36. S.-W. Nam, C. Jung, H. Li, M. Yu, J.R.V. Flora, L.K. Boateng, N. Her, K.-D. Zoh, Y. Yoon, Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution, Chemosphere, 136 (2015) 20–26.
  37. F.A. Rosli, H. Ahmad, K. Jumbri, A.H. Abdullah, S. Kamaruzaman, N.A.F. Abdullah, Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent, R. Soc. Open Sci., (2021), doi:10.1098/rsos.201076.
  38. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339, doi:10.1021/ja01539a017.
  39. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  40. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  41. W.K. Webber, J.C. Morris, Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (1963) 31–60.
  42. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  43. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  44. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Adv., 6 (2016) 64993–65011.
  45. B.Y.Z. Hiew, L.Y. Lee, X.J. Lee, S. Gan, S. Thangalazhy- Gopakumar, S.S. Lim, G.-T. Pan, T.C.-K. Yang, Adsorptive removal of diclofenac by graphene oxide: optimization, equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 98 (2019) 150–163.
  46. C. Bartlam, S. Morsch, K.W.J. Heard, P. Quayle, S.G. Yeates, A. Vijayaraghavan, Nanoscale infrared identification and mapping of chemical functional groups on graphene, Carbon, 139 (2018) 317–324.
  47. S.-G. Kim, O.-K. Park, J.H. Lee, B.-C. Ku, Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes, Carbon Lett., 14 (2013) 247–250.
  48. M.P. More, P.K. Deshmukh, Quality by design approach for the synthesis of graphene oxide nanosheets using full factorial design with enhanced delivery of Gefitinib nanocrystals, Mater. Res. Express, 8 (2021) 075602, doi: 10.1088/2053-1591/ac144b.
  49. R. Hack, C.H.G. Correia, R.A.D.S. Zanon, S.H. Pezzin, Characterization of graphene nanosheets obtained by a modified Hummer’s method, Matéria (Rio de Janeiro), 23 (2018), doi: 10.1590/S1517-707620170001.0324.
  50. Y.J. Yun, W.G. Hong, W.-J. Kim, Y. Jun, B.H. Kim, A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics, Adv. Mater., 25 (2013) 5701–5705.
  51. K. Khanafer, K. Vafai, Analysis of the anomalies in graphene thermal properties, Int. J. Heat Mass Transfer, 104 (2017) 328–336.
  52. J.-F. Dai, G.-J. Wang, L. Ma, C.-K. Wu, Surface properties of graphene: relationship to graphene-polymer composites, Rev. Adv. Mater. Sci., 40 (2015) 60–71.
  53. W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J.-J. Lee, X. Ji, Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent, ACS Appl. Mater. Interfaces, 4 (2015) 2626–2631.
  54. A. Ariharan, B. Viswanathan, V. Nandhakumar, Nitrogen doped graphene as potential material for hydrogen storage, Graphene, 6 (2017) 41–60.
  55. A. Sheikhmohammadi, S.M. Mohseni, R. Khodadadi, M. Sardar, M. Abtahi, S. Mahdavi, H. Keramati, Z. Dahaghin, S. Rezaei, M. Almasian, M. Sarkhosh, M. Faraji, S. Nazari, Application of graphene oxide modified with
    8-hydroxyquinoline for the adsorption of Cr(VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 233 (2017) 75–88.
  56. G. Torgut, M. Tanyol, F. Biryan, G. Pihtili, K. Demirelli, Application of response surface methodology for optimization of Remazol Brilliant Blue R removal onto a novel polymeric adsorbent, J. Taiwan Inst. Chem. Eng., 80 (2017) 406–414.
  57. A. Afkhami, M. Saber-Tehrani, H. Bagheri, Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution, Desalination, 263 (2017) 240–248.
  58. R. Rostamian, H.A. Behnejad, A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets, Ecotoxicol. Environ. Saf., 147 (2018) 117–123.
  59. Drugbank – Diclofenac. Available at: https://go.drugbank.com/ drugs/DB00586 (Accessed April 2020).
  60. C. Saucier, M.A. Adebayo, E.C. Lima, R. Catalunã, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents, J. Hazard. Mater., 289 (2015) 18–27.
  61. A. Molla, Y. Li, B. Mandal, S.G. Kang, S.H. Hur, J.S. Chung, Selective adsorption of organic dyes on graphene oxide: theoretical and experimental analysis, Appl. Surf. Sci., 464 (2019) 170–177.
  62. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  63. W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (2013) 1055–1064.
  64. V.C. Silva, M.E.B. Araújo, A.M. Rodrigues, J.M. Cartaxo, R.R. Menezes, G.A. Neves, Adsorption behavior of
    acid-treated Brazilian palygorskite for cationic and anionic dyes removal from the water, Sustainability, 13 (2021) 3954, doi: 10.3390/su13073954.
  65. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., (1960) 3973–3993, doi: 10.1039/JR9600003973.
  66. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015), doi: 10.1515/pac-2014-1117.
  67. M.D.G. de Luna, Murniati, W. Budianta, K.K.P. Rivera, R.O. Arazo, Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks, J. Environ. Chem. Eng., 5 (2017) 1465–1474.
  68. I.M. Jauris, C.F. Matos, C. Saucier, E.C. Lima, A.J.G. Zarbin, S.B. Fagan, F.M. Machado, I. Zanella, Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study, Phys. Chem. Chem. Phys., 8 (2016) 1526–1536.
  69. N. Thi Minh Tam, Y. Liu, H. Bashir, Z. Yin, Y. He, X. Zhou, Efficient removal of diclofenac from aqueous solution by potassium ferrate-activated porous graphitic biochar: ambient condition influences and adsorption mechanism, Int. J. Environ. Res. Public Health, 17 (2019) 291, doi: 10.3390/ijerph17010291.
  70. T. Liu, Z. Xie, Y. Zhang, J. Fan, Q. Liu, Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water, RSC Adv., 7 (2017) 38279–38286.
  71. F. Jiang, D. Zhang, X.-k. Ouyang, L.-Y. Yang, Fabrication of porous polyethyleneimine-functionalized chitosan/Span 80 microspheres for adsorption of diclofenac sodium from aqueous solutions, Sustainable Chem. Pharm., 21 (2021) 100418, doi: 10.1016/j.scp.2021.100418.
  72. I. Duru, D. Ege, A.R. Kamali, Graphene oxides for removal of heavy and precious metals from wastewater, J. Mater. Sci., 51 (2016) 6097–6116.