1. X. Xiao, B.L. Chen, Z.M. Chen, L.Z. Zhu, L.S. Jerald, Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review, Environ. Sci. Technol., 52 (2018) 5027–5047.
  2. A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, S. Swetha, P. Tsopbou Ngueagni, S. Karishma, S. Jeevanantham, P.R. Yaashikaa, Ultrasonic assisted agro waste biomass for rapid removal of Cd(II) ions from aquatic environment: mechanism and modelling analysis, Chemosphere, 271 (2021) 129484, doi:10.1016/j.chemosphere.2020.129484.
  3. A. Uihlein, L. Schebek, Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment, Biomass Bioenergy, 33 (2009) 793–802.
  4. A.N. Swami Nathen, R.S. Robert, Indian rice husk ash – improving the mechanical properties of concrete:
    a review, Int. J. Eng. Res. Appl., 7 (2017) 76–79.
  5. N. Shukla, D. Sahoo, N. Remya, Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment, J. Cleaner Prod., 235 (2019) 1073–1079.
  6. J. Acharya, U. Kumar, P. Mahammed Rafi, Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent - a review, Int. J. Curr. Eng. Technol., 8 (2018) 526–530.
  7. V.R. Madduluri, K.K. Mandari, V. Velpula, M. Varkolu, S.R.R. Kamaraju, M. Kang, Rice husk-derived carbon-silica supported Ni catalysts for selective hydrogenation of biomassderived furfural and levulinic acid, Fuel, 261 (2020) 116339, doi: 10.1016/j.fuel.2019.116339.
  8. D. An, Y. Guo, Y. Zhu, Z. Wang, A green route to preparation of silica powders with rice husk ash and waste gas, Chem. Eng. J., 162 (2010) 509–514.
  9. H. Basu, S. Saha, I.A. Mahadevan, M.V. Pimple, R.K. Singhal, Humic acid coated cellulose derived from rice husk: a novel biosorbent for the removal of Ni and Cr, J. Water Process Eng., 32 (2019) 100892, doi:10.1016/j.jwpe.2019.100892.
  10. P. Chen, W. Gu, W. Fang, X. Ji, R. Bie, Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process, Environ. Prog. Sustainable Energy, 36 (2017) 830–837.
  11. S. Handley-Sidhu, J.C. Renshaw, S. Moriyama, B. Stolpe, C. Mennan, S. Bagheriasl, P. Yong, A. Stamboulis,
    M. Paterson-Beedle, K. Sasaki, R.A.D. Pattrick, J.R. Lead, L.E. Macaskie, Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis, Environ. Sci. Technol., 45 (2011) 6985–6990.
  12. Z.P. Yang, C.J. Zhang, Adsorption/desorption behavior of protein on nanosized hydroxyapatite coatings:
    a quartz crystal microbalance study, Appl. Surf. Sci., 255 (2009) 4569–4574.
  13. Z. Zhu, L. Li, H. Zhang, Y. Qiu, J. Zhao, Adsorption of lead and cadmium on Ca-deficient hydroxyapatite, Sep. Sci. Technol., 45 (2010) 262–268.
  14. W. Xiong, Y. Yang, D. Huang, L. Hu, J. Wang, C. Zhang, L. Jiang, M. Cheng, C. Zhou, M. Chen, G. Zeng, C. Lai, Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications, Appl. Catal., B, 238 (2018) 6–18.
  15. L. Yuan, M. Yan, Z. Huang, K. He, G. Zeng, A. Cheng, L. Hu, H. Li, M. Peng, T. Huang, Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution, J. Colloid Interface Sci., 541 (2019) 101–113.
  16. S. Saoiabi, A. Gouza, H. Bouyarmane, A. Laghzizil, A. Saoiabi, Organophosphonate-modified hydroxyapatites for Zn(II) and Pb(II) adsorption in relation of their structure and surface properties, J. Environ. Chem. Eng., 4 (2015) 428–433.
  17. W. Liu, S. Tian, X. Zhao, W. Xie, Y. Gong, D. Zhao, Application of stabilized nanoparticles for in situ remediation of metalcontaminated soil and groundwater: a critical review, Curr. Pollut. Rep., 1 (2015) 280–291.
  18. S. Mignardi, A. Corami, V. Ferrini, Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn, Chemosphere, 86 (2012) 354–360.
  19. X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai, L. Xu, G. Xu, Y. Jian, F. Hu, Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways:
    role of high-valent iron-oxo species and Fe–Nx sites, Chem. Eng. J., 427 (2022) 130803, doi:10.1016/j.cej.2021.130803.
  20. M. Iqbal, M. Abbas, J. Nisar, A. Nazir, Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review, Chem. Int., 5 (2019) 1–80.
  21. M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G.A. Shar, M.A. Tahir, M. Iqbal, Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review, Sci. Total. Environ., 626 (2018) 1295–1309.
  22. H. Rasoulzadeh, A. Sheikhmohammadi, M. Abtahi, B. Roshan, R. Jokar, Eco-friendly rapid removal of palladium from aqueous solutions using alginate-diatomite magnano composite, J. Environ. Chem. Eng., 9 (2021) 105954, doi: 10.1016/j. jece.2021.105954.
  23. H. Godini, F. Hashemi, L. Mansuri, M. Sardar, G. Hassani, S.M. Mohseni, A.A. Alinejad, S. Golmohammadi,
    A.S. Mohammadi, Water polishing of phenol by walnut green hull as adsorbent: an insight of adsorption isotherm and kinetic, J. Water Reuse Desal., 6 (2016) 544–552.
  24. A. Kausar, H.N. Bhatti, M. Iqbal, A. Ashraf, Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology, Water Sci. Technol., 76 (2017) 1035–1043.
  25. Y.Y. Wang, Y.X. Liu, H.H. Lu, R.Q. Yang, S.M. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatitebiochar nanocomposite in aqueous solutions, J. Solid State Chem., 261 (2018) 53–61.
  26. Y.C. Long, J. Jiang, J. Hu, X.J. Hu, Q. Yang, S.Q. Zhou, Removal of Pb(II) from aqueous solution by hydroxyapatite/carbon composite: preparation and adsorption behavior, Colloids Surf., A, 577 (2019) 471–479.
  27. M.M. Wang, K.M. Zhang, M.Y. Wu, Q.Y. Wu, J.Y. Liu, J.J. Yang, J.N. Zhang, Unexpectedly high adsorption capacity of esterified hydroxyapatite for heavy metal removal, Langmuir, 35 (2019) 16111–16119.
  28. Z. Chen, B. Chen, C.T. Chiou, Fast and slow rates of naphthalene sorption to biochars produced at different temperatures, Environ. Sci. Technol., 46 (2016) 11104–11111.
  29. N. Alias, N. Ibrahim, M. Hamid, H. Hasbullah, R.R. Ali, A.N. Sadikin, U.A. Asli, Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis, Malays. J. Anal. Sci., 18 (2014) 705–710.
  30. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  31. H. Yang, Y. Rong, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781–1788.
  32. K. Yadav, M. Tyagi, S. Kumari, S. Jagadevan, Influence of process parameters on optimization of biochar fuel characteristics derived from rice husk: a promising alternative solid fuel, Bioenergy Res., 12 (2019) 1052–1065.
  33. L. Lian, X. Cao, Y. Wu, D. Sun, D. Lou, A green synthesis of magnetic bentonite material and its application for removal of microcystin-LR in water, Appl. Surf. Sci., 289 (2014) 245–251.
  34. W.B. Guan, B.X. Zhao, S. Qiu, N. Liu, N. Lu, R. Cheng, Y. Sun, The adsorption behavior of Cr(VI) on modified montmorillonite, J. Northwest Univ., 46 (2016) 375–380.
  35. J. Yi, Z. Huo, A.M. Asiri, K.A. Alamry, J. Li, Application of agroforestry waste biomass adsorption materials in water pollution treatment, J. Prog. Chem., 31 (2019) 760–762 (in Chinese).
  36. T.K. Sen, D. Gomez, Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite, Desalination, 267 (2011) 286–294.
  37. M.S. Fernando, R.M.D. Silva, K.M.N.D. Silva, Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions, Appl. Surf. Sci., 351 (2015) 95–103.
  38. Y. Zhang, Z. Ma, Q. Zhang, J. Wang, Q. Ma, Y. Yang, X. Luo, W. Zhang, Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures, Bioresources, 12 (2017) 4652–4669.
  39. Z. Shen, Y. Zhang, O. Mcmillan, F. Jin, A. Al-Tabbaa, Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk, Environ. Sci. Pollut. Res. Int., 24 (2017) 12809–12819.
  40. C. Subrahmanyam, D.A. Bulushev, L. Kiwi-Minsker, Dynamic behavior of activated carbon catalysts during ozone decomposition at room temperature, Appl. Catal., B, 61 (2005) 98–106.
  41. M.P. da Rosa, A.V. Igansi, S.F. Lütke, T.R.S.C. Junior, A.C.R. do Santos, A.P. de Oliveira Lopes Inacio,
    L.A. de Almeida Pinto, P.H. Beck, A new approach to convert rice husk waste in a quick and efficient adsorbent to remove cationic dye from water, J. Environ. Chem. Eng., 7 (2019) 103504, doi: 10.1016/j.jece.2019.103504.
  42. P. Kaur, P. Kaur, K. Kaur, Adsorptive removal of imazethapyr and imazamox from aqueous solution using modified rice husk, J. Cleaner Prod., 244 (2019) 118699, doi: 10.1016/j.jclepro.2019.118699.
  43. X. Li, Q. Shen, D. Zhang, X. Mei, R. Wei, Y. Xu, G. Yu, M. Andrea, Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy, PLoS One, 8 (2013) e65949, doi: 10.1371/journal.pone.0065949.
  44. G.S. Kumar, G. Karunakaran, E.K. Girija, E. Kolesnikov, N.V. Minh, M.V. Gorshenkov, D. Kuznetso, Size and morphologycontrolled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method, Ceram. Int., 44 (2018) 11257–11264.
  45. D. MubarakAli, Microwave irradiation mediated synthesis of needle-shaped hydroxyapatite nanoparticles as a flocculant for Chlorella vulgaris, Biocatal. Agric. Biotechnol., 17 (2019) 203–206.
  46. H. Nishida, M. Kimata, T. Ogata, T. Kawei, Malodors adsorption behavior of metal cation incorporated hydroxyapatite, J. Environ. Chem. Eng., 5 (2017) 52815–2819.
  47. Z. Li, X. Liu, Y. Wang, Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution, J. Mater. Cycles Waste Manage., 22 (2020) 123–132.
  48. M. Li, S. Ma, X. Zhu, Preparation of activated carbon from pyrolyzed rice husk by leaching out ash content after CO2 activation, Bioresources, 11 (2016) 3384–3396.
  49. D.L. Yao, B.S. Jin, H. Tao, Experimental study on thermogravimetry-FTIR of rice husk, Energy Res. Util., 3 (2008) 11–15 (in Chinese).
  50. Y. Shen, K. Yoshikawa, Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification, Ind. Eng. Chem. Res., 53 (2014) 10929–10942.
  51. D. Wang, L. Chu, M. Paradelo, W.J.G.M. Peijnenburg, Y. Wang, D. Zhou, Transport behavior of humic
    acid-modified nanohydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition, J. Colloid Interface Sci., 360 (2011) 398–407.
  52. Ö. Akçakal, M. Şahin, M. Erdem, Synthesis and characterization of high-quality activated carbons from hard-shelled agricultural wastes mixture by zinc chloride activation, Chem. Eng. Commun., 206 (2018) 888–897.
  53. K. Legrouri, E. Khouya, H. Hannache, M. El Hartti, M. Ezzine, R. Naslain, Activated carbon from molasses efficiency for Cr(VI), Pb(II) and Cu(II) adsorption: a mechanistic study, Chem. Int., 3 (2017) 301–310.
  54. M. Kapnisti, F. Noli, P. Misaelides, G. Vourlias, D. Karfaridis, A. Hatzidimitriou, Enhanced sorption capacities for lead and uranium using titanium phosphates; adsorption, kinetics, equilibrium studies and mechanism implication, Chem. Eng. J., 342 (2018) 184–195.
  55. B.M. Weckhuysen, I.E. Wachs, R.A. Schoonheydt, Surface chemistry and spectroscopy of chromium in inorganic oxides, Chem. Rev., 96 (1996) 3327–3350.
  56. C. Zou, J. Liang, J. Wei, Y. Guan, Y. Zhang, Adsorption behavior of magnetic bentonite for removing Hg(II) from aqueous solutions, RSC Adv., 8 (2018) 27587–27595.
  57. C. Zou, W. Jiang, J. Liang, X. Sun, Y. Guan, Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite, Environ. Sci. Pollut. Res., 26 (2019) 1315–1322.
  58. Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
  59. M. Su, D.C.W. Tsang, X. Ren, Q. Shi, J. Tang, H. Zhang, L. Kong, L. Hou, G. Song, D. Chen, Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: evaluation on characteristics, mechanisms and performance, Environ. Pollut., 254 (2019) 112891, doi: 10.1016/j.envpol.2019.07.059.
  60. M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr(VI) adsorption: kinetic, equilibrium and thermodynamics studies, J. Environ. Chem. Eng., 5 (2016) 400–411.
  61. G. Bharath, D. Prabhu, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Facile in-situ growth of Fe3O4 nanoparticles on hydroxyapatite nanorods for pH dependent adsorption and controlled release of proteins, RSC Adv., 4 (2014) 50510–50520.
  62. I.A. Bhatti, N. Ahmad, N. Iqbal, M. Zahid, M. Iqbal, Chromium adsorption using waste tire and conditions optimization by response surface methodology, J. Environ. Chem. Eng., 5 (2017) 2740–2751.