1. J. Clarke, The occurrence and significance of biogenic opal in the regolith, Earth Sci. Rev., 60 (2003) 175–194.
  2. L.A. Benzelmat, R. Cherraka, M. Hadjel, A. Ketteb, N. Goual, Characterization between crude diatomite and diatomite treated chemically, Algerian J. Environ. Sci. Technol., 5 (2019) 1107–1112.
  3. H. Meradi, L. Atoui, W. Ghabeche, L. Bahloul, Contribution to characterization of natural diatomite, Int. J. Sci. Res. Eng. Technol. (IJSET), 9 (2019) 6–11.
  4. M.P. Cabreraa, C.R.D. Assis, D.F.M. Neri, C.F. Pereira, F. Soria, B.L. Carvalho Jr., High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles, Biotechnol. Rep., 14 (2017) 38–46.
  5. B. Wang, F.C. de Godoi, Z. Sun, Q. Zeng, S. Zheng, R.L. Frost, Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles, J. Colloid Interface Sci., 438 (2015) 204–211.
  6. T. Benkacem, B. Hamdi, A. Chamayou, H. Balard, R. Calvet, Physicochemical characterization of a diatomaceous upon an acid treatment: a focus on surface properties by inverse gas chromatography, Powder Technol., 294 (2016) 498–507.
  7. H. Hadjar, B. Hamdi, M. Jaber, J. Brendlé, Z. Kessaïssia, H. Balard, J.B. Donnet, Elaboration and characterisation of new mesoporous materials from diatomite and charcoal, Microporous Mesoporous Mater., 107 (2008) 219–226.
  8. M. Sprynskyy, I. Kovalchuk, B. Buszewski, The separation of uranium ions by natural and modified diatomite from aqueous solution, J. Hazard. Mater., 181 (2010) 700–707.
  9. M. Šljivić, I. Smičiklas, S. Pejanović, I. Plećaš, Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia, Appl. Clay Sci., 43 (2009) 33–40.
  10. P. Yuan, D. Liu, D.-Y. Tan, K.-K. Liu, H.-G. Yu, Y.-H. Zhong, A.-H. Yuan, W.-B. Yu, H.-P. He, Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption: the effects of heating pretreatment, Microporous Mesoporous Mater., 170 (2013) 9–19.
  11. L. Sun, J. Wang, J. Wu, T. Wang, Y. Du, Y. Li, H. Li, Constructing nanostructured silicates on diatomite for Pb(II) and Cd(II) removal, J. Mater. Sci., 54 (2019) 6882−6894.
  12. Y. Du, X. Wang, J. Wu, J. Wang, Y. Li, H. Dai, Mg3Si4O10(OH)2 and MgFe2O4 in situ grown on diatomite: highly efficient adsorbents for the removal of Cr(VI), Microporous Mesoporous Mater., 271 (2018) 83−91.
  13. N. Liu, Y. Wu, H. Sha, Magnesium oxide modified diatomite waste as an efficient adsorbent for organic dye removal: adsorption performance and mechanism studies, Sep. Sci. Technol., 55 (2020) 234–246.
  14. M.B. Nguyen, T.V. Nguyen, G.H. Le, T.T.T. Pham, K.L. Van, G.T.T. Pham, T.N. Nguyen, Q.V. Tran, T.A. Vu, High CO adsorption performance of CuCl-modified diatomites by using the novel method “Atomic Implantation”, J. Chem., 2021 (2021) 9762578, doi: 10.1155/2021/9762578.
  15. S. Chentouf, Modification des Diatomites et Bentonites Algériennes par des Espèces Chimiques Minérales et Organiques.Synthèses, CaractérisationsetApplications, Thesis 2020.
  16. T. Wang, Y. Yang, J. Wang, J. Wu, L. Sun, Y. Du, Y. Li, H. Li. A general route to modify diatomite with niobates for versatile applications of heavy metal removal, RSC Adv., 9 (2019) 3816–3827.
  17. Y. Fu, Y. Huang, J. Hu, Z. Zhang, Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions, Water Sci. Technol., 77 (2018) 1363–1371.
  18. K.-J. Hsien, W.-T. Tsai, T.-Y. Su, Preparation of diatomite–TiO2 composite for photodegradation of bisphenol-A in water, J. Sol-Gel Sci. Technol., 51 (2009) 63–69.
  19. Z. Sun, C. Bai, S. Zheng, X. Yang, R.L. Frost, A comparative study of different porous amorphous silica minerals supported TiO2 catalysts, Appl. Catal., A, 458 (2013) 103–110.
  20. S.K. Padmanabhan, S. Pal, E. Ul Haq, A. Licciulli, Nanocrystalline TiO2–diatomite composite catalysts: effect of crystallization on the photocatalytic degradation of rhodamine B, Appl. Catal., A, 485 (2014) 157–162.
  21. S.K. Padmanabhan, S. Pal, A. Licciulli, Diatomite/silver phosphate composite for efficient degradation of organic dyes under solar radiation, Bull. Mater. Sci., 43 (2020) 295, doi: 10.1007/s12034-020-02269-2.
  22. H.-T. Zhu, Q.-F. Ren, Z. Jin, Y. Ding, X.-Y. Liu, X.-H. Ni, M.-L. Han, S.-Y. Ma, Q. Ye, W.-C. Oh, Preparation of
    AgCl/Ag3PO4/diatomite composite by microemulsion method for rapid photo-degradation of rhodamine B with stability under visible light, Korean J. Mater. Res., 30 (2020) 383–392.
  23. W. Rezig, M. Hadjel, Visible light assisted heterogeneous photodecouloursiation of vat orange 02 textile dye in aqueous solution using calcined ferrihydrite-modified diatomite, Int. J. ChemTech. Res., 8 (2015) 111–115.
  24. U. Nahr, W. von Bistram, Foundations for the computer-aided calculation of chemicals for dyeing with indanthrene dyes in partly or fully-flooded closed pressure dyeing machines, Text. Praxis Int., 46 (1991) 978–983.
  25. F. Govaert, E. Temmerman, P. Westbroek, Determination of anthraquinone in alkaline sodium dithionite solution by electrochemical analysis, Anal. Commun., 35 (1998) 153–156.
  26. M. Anbu Kulandainathan, K. Patil, A. Muthukumaran, R.B. Chavan, Review of the process development aspects of electrochemical dyeing: its impact and commercial applications, Color. Technol., 123 (2007) 143–151.
  27. A. Roessler, D. Crettenand, Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules, Dyes Pigm., 63 (2004) 29–37.
  28. W. Rezig, M. Hadjel, Photocatalytic degradation of vat green 3 textile dye, using the ferrihydrite-modified diatomite with TiO2/UV process, Orient. J. Chem., 30 (2014) 993–1007, doi: 10.13005/ojc/300310.
  29. R.O.Y. Breese, Diatomite, D.D. Carr, Ed., Industrial Minerals and Rocks, SMME, Colorado, USA, 1994, pp. 397–412.
  30. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, New York, 2000.
  31. G.W. Sears, Determination of specific surface area of colloidal silica by titration with sodium hydroxide, Anal. Chem., 28 (1956) 1981–1983.
  32. Y. Al-Degs, M.A.M. Khraisheh, M.F. Tutunji, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res., 35 (2001) 3724–3728.
  33. J. Chen, S. Yiacoumi, T.G. Blaydes, Equilibrium and kinetic studies of copper adsorption by activated carbon, Sep. Technol., 6 (1996) 133–146.
  34. J. Paul Chen, M. Lin, Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies, Water Res., 35 (2001) 2385–2394.
  35. P. Yuan, D.Q. Wu, H.P. He, Z.Y. Lin, The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study, Appl. Surf. Sci., 227 (2004) 30–39.
  36. B. Xu, Z. Li, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage, Appl. Energy, 105 (2013) 229–237.
  37. R. Yezou, Contribution à l’étude des propriétés thermoplastiques des matériaux de construction cohérents et non coherents, Thèse de Docteur-Ingénieur, INSA de Lyon, France, 1978.
  38. W. Xu, D.B. Hausner, R. Harrington, P.L. Lee, D.R. Strongin, J.B. Parise, Structural water in ferrihydrite and constraints this provides on possible structure models, Am. Mineral., 96 (2011) 513–520.
  39. A. Rufus, N. Sreeju, V. Vilas, D. Philip, Biosynthesis of hematite (α-Fe2O3) nanostructures: size effects on applications in thermal conductivity, catalysis, and antibacterial activity, J. Mol. Liq., 242 (2017) 537–549.
  40. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method, Results Phys., 7 (2017) 3007–3015.
  41. M. Stoia, A. Tamaş, G. Rusu, J. Moroşanu, Synthesis of magnetic iron oxides from ferrous sulfate and substitutes amines, Stud. Univ. Babes-Bolyai Chem., 61 (2016) 147–162.
  42. V. Rao, A.L. Shashimohan, A.B. Biswas, Studies on the formation of γ-Fe2O3 (maghemite) by thermal decomposition of ferrous oxalate dehydrate, J. Mater. Sci., 9 (1974) 430–433.
  43. R. Cornell, U. Schwertmann, Structure, Properties, Reactions, Occurrence and Uses, VCH, Weinheim, 1996.
  44. H. Böke, S. Akkurt, S. Özdemir, E.H. Göktürk, E.N.C. Saltik, Quantification of CaCO3–CaSO3·0.5H2O–CaSO4·2H2O mixtures by FTIR analysis and its ANN model, Mater. Lett., 58 (2004) 723–726.
  45. B.A. Morrow, I.D. Gay, Adsorption on Silica Surfaces, E. Papirer, M. Dekker, Ed., lnstitut de Chimie des Surfaces et Interfaces, Mulhouse, France, Taylor & Francis Group, CRC Press, Boca Raton, London, New York, 2000, pp. 9–33.
  46. W. Xu, D.B. Hausner, R. Harrington, P.L. Lee, D.R. Strongin, J.B. Parise, Structural water in ferrihydrite and constraints this provides on possible structure models, Am. Mineral., 96 (2011) 513–520.
  47. E. Abdelkader, L. Nadjia, B. Naceur, L. Favier-Teodorescu, Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation, Cerâmica, 68 (2022) 84–96.
  48. M. Muruganandham, M. Swaminathan, Decolorisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology, Dyes Pigm., 63 (2004) 315–321.
  49. N. Laouedj, A. Elaziouti, N. Benhadria, A. Bekka, CeO2 nanoscale particles: synthesis, characterization and photocatalytic activity under UVA light irradiation, J. Rare Earths, 36 (2018) 575–587.
  50. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem., 19 (2009) 2710–2714.
  51. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  52. E. Matijevic, M. Borkovec, Surface and Colloid Surface, Springer, Boston, 2004.
  53. N. Benhadria, A. Elaziouti, N. Laouedj, E. Sari, NZF nanoscale particles: synthesis, characterization and its effective adsorption of bromophenol blue, Bull. Chem. React. Eng. Catal., 15 (2020) 726–742.
  54. H. Jiang, R. Wang, D. Wang, X. Hong, S. Yang, SnO2/diatomite composite prepared by solvothermal reaction for low-cost photocatalysts, Catalysts, 9 (2019) 1060, doi: 10.3390/catal9121060.
  55. H.F. MoafiI, R. Ansari, S. Sadeghnia, Preparation of wood sawdust/Fe2O3 nanocomposite and its application for arsenic(III) ion removal from aqueous solutions, Cellul. Chem. Technol., 52 (2018) 271–282.
  56. A. Elaziouti, N. Laoudj, N. Benhadria, L. Favier-Teodorescu, Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation, Cerâmica, 68 (2022) 84–96.
  57. X. Meng, J. Ryu, B. Kim, S. Ko, Application of iron oxide as a pH-dependent indicator for improving the nutritional quality, Clin. Nutr. Res., 5 (2016) 172–179.
  58. L. Favier, A.M. Sescu, A. Elaziouti, L. Oughebbi Berthou, D. Lutic, Urea-assisted synthesis of mesoporous TiO2 photocatalysts for the efficient removal of clofibric acid from water, Materials, 14 (2021) 6035, doi:10.3390/ma14206035.