1. H. Ben Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova,
    P. Golińska, L. Belbahri, Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods, Appl. Sci., 11 (2021) 6255, doi: 10.3390/APP11146255.
  2. F.M. Drumond Chequer, G.A.R. de Oliveira, E.R. Anastácio Ferraz, J. Carvalho Cardoso, M.V. Boldrin Zanoni, D.P. de Oliveira, Textile Dyes: Dyeing Process and Environmental Impact, M. Günay, Ed., Eco-Friendly Textile Dyeing and Finishing, InTechOpen, 2013. Available at: 53659
  3. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovation, 3 (2019) 275–290.
  4. C.C. de Jesus Azevedo, R. de Oliveira, P. Suares-Rocha, D. Sousa-Moura, A.T. Li, C.K. Grisolia,
    G. de Aragão Umbuzeiro, C.C. Montagner, Auramine dyes induce toxic effects to aquatic organisms from different trophic levels: an application of predicted non-effect concentration (PNEC), Environ. Sci. Pollut. Res., 28 (2021) 1866–1877.
  5. D.P. Dutta, R. Venugopalan, S. Chopade, Manipulating carbon nanotubes for efficient removal of both cationic and anionic dyes from wastewater, ChemistrySelect, 2 (2017) 3878–3888.
  6. D.P. Dutta, A. Mathur, J. Ramkumar, A.K. Tyagi, Sorption of dyes and Cu(II) ions from wastewater by sonochemically synthesized MnWO4 and MnMoO4 nanostructures, RSC Adv., 4 (2014) 37027–37035.
  7. A. Singh, D.P. Dutta, J. Ramkumar, K. Bhattacharya, A.K. Tyagi, M.H. Fulekar, Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4, RSC Adv., 3 (2013) 22580–22590.
  8. R.S. Jackson, In: R.S. Jackson, Wine Science: Principles and Applications, Elsevier, London, 2020, pp. 573–723.
  9. F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S.E. Chaabouni, Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product, J. Mol. Liq., 219 (2016) 279–288.
  10. Z. Yan, C. Yi, T. Liu, J. Yang, H. Ma, L. Sha, D. Guo, H. Zhao, X. Zhang, W. Wang, Effect of lignin-containing highly fibrillated cellulose on the adsorption behavior of an organic dye, BioResources, 16 (2021) 6560–6576. Available at: Hp13NjGhMgMJ: article/view/BioRes_16_4_6560_Yan_Lignin_Fibrillated_ Cellulose+&cd=2&hl=pl&ct=clnk&gl=pl (Accessed March 31, 2022).
  11. S. Colmenares-Cruz, J.E. Sánchez, J. Valle-Mora, Agaricus bisporus production on substrates pasteurized by self-heating, AMB Express, 7 (2017) 135, doi: 10.1186/S13568-017-0438-6.
  12. J. Vetter, Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes, Food Chem., 102 (2007) 6–9.
  13. S. Saiqa, N.B. Haq, A.H. Muhammad, A.A. Muhammad, Ata-ur-Rehman, Studies on chemical composition and nutritive evaluation of wild edible mushrooms, Iran. J. Chem. Chem. Eng., 27 (2008) 151–154.
  14. R. Goyal, R.B. Grewal, R.K. Goyal, Nutritional attributes of Agaricus bisporus and Pleurotus sajor caju mushrooms, Nutr. Health, 18 (2006) 179–184.
  15. A. Hassainia, H. Satha, S. Boufi, Chitin from Agaricus bisporus: extraction and characterization, Int. J. Biol. Macromol., 117 (2018) 1334–1342.
  16. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using
    pseudo-first-order and pseudo-second-order rate laws: a review, Cleaner Eng. Technol., 1 (2020) 100032, doi: 10.1016/J.CLET.2020.100032.
  17. F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  18. M.A. Islam, M.A. Chowdhury, M.S.I. Mozumder, M.T. Uddin, Langmuir adsorption kinetics in liquid media: interface reaction model, ACS Omega, 6 (2021) 14481–14492.
  19. G. Yue, H. Wu, J. Yue, M. Li, C. Zeng, W. Liang, Adsorption measurement and dual-site Langmuir model II: modeling and prediction of carbon dioxide storage in coal seam, Energy Explor. Exploit., 37 (2019) 1268–1285.
  20. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  21. G. Bekiaris, D. Tagkouli, G. Koutrotsios, N. Kalogeropoulos, G.I. Zervakis, Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis, Foods, 9 (2020) 535, doi: 10.3390/FOODS9040535.
  22. W. Kukula-Koch, M. Grzybek, A. Strachecka, A. Jaworska, A. Ludwiczuk, ATR-FTIR-based fingerprinting of some Cucurbitaceae extracts: a preliminary study, Acta Soc. Bot. Pol., 87 (2018), doi: 10.5586/asbp.3579.
  23. A.A. Sulieman, K.X. Zhu, W. Peng, H.A. Hassan, M. Obadi, M.I. Ahmed, H.M. Zhou, Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads, J. Food Meas. Charact., 13 (2019) 1884–1897.
  24. D. Kumar, J. Pandey, P. Kumar, Synthesis and characterization of modified chitosan via microwave route for novel antibacterial application, Int. J. Biol. Macromol., 107 (2018) 1388–1394.
  25. E.M. Dahmane, M. Taourirte, N. Eladlani, M. Rhazi, Extraction and characterization of chitin and chitosan from Parapenaeus longirostris from Moroccan Local Sources, Int. J. Polym. Anal. Charact., 19 (2014) 342–351.
  26. P. Szymczyk, U. Filipkowska, T. Jóźwiak, M. Kuczajowska-Zadrożna, Use of sawdust immobilised on chitosan for disposal of dyes from water solutions, Prog. Chem. Appl. Chitin Deriv., 22 (2017) 207–219, doi:10.15259/PCACD.22.21.
  27. T. Jóźwiak, U. Filipkowska, S. Brym, M. Zyśk, The use of aminated cotton fibers as an unconventional sorbent to remove anionic dyes from aqueous solutions, Cellulose, 27 (2020) 3957–3969.
  28. T. Jóźwiak, U. Filipkowska, P. Marciniak, Use of hen feathers to remove Reactive Black 5 and Basic red 46 from aqueous solutions, Desal. Water Treat., 232 (2021) 129–139.
  29. U. Filipkowska, T. Jόźwiak, P. Szymczyk, M. Kuczajowska-Zadrożna, The use of active carbon immobilised on chitosan beads for RB5 and BV10 dye removal from aqueous solutions, Prog. Chem. Appl. Chitin Deriv., 22 (2017) 14–26, doi: 10.15259/ PCACD.22.02.
  30. T. Jóźwiak, U. Filipkowska, J. Struk-Sokołowska, K. Bryszewski, K. Trzciński, J. Kuźma, M. Ślimkowska, The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions, Sci. Rep. 111, 11 (2021) 1–12.
  31. A. Kowalkowska, T. Jóźwiak, Utilization of pumpkin (Cucurbita pepo) seed husks as a low-cost sorbent for removing anionic and cationic dyes from aqueous solutions, Desal. Water Treat., 171 (2019) 397–407.
  32. M. Hubbe, S. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, BioResorces, 14 (2019) 7582–7626.
  33. Z. Chen, H. Deng, C. Chen, Y. Yang, H. Xu, Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method, J. Environ. Health Sci. Eng., 12 (2014) 63, doi: 10.1186/2052-336X-12-63.
  34. U. Filipkowska, T. Jóźwiak, P. Bugajska, M. Kuczajowska-Zadrożna, The influence of chitin amination on the effectiveness of RB5 and RY84 dye sorption, Prog. Chem. Appl. Chitin Deriv., 23 (2018) 66–75.
  35. K. Vijayaraghavan, Y.S. Yun, Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp., Dyes Pigm., 3 (2008) 726–732.
  36. G.M. Nabil, N.M. El-Mallah, M.E. Mahmoud, Enhanced decolorization of Reactive Black 5 dye by active carbon sorbentim-mobilized-cationic surfactant (AC-CS), J. Ind. Eng. Chem., 20 (2014) 994–1002.
  37. Z. Eren, F.N. Acar, Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies, Desalination, 194 (2006) 1–10.
  38. Ö. Tunç, H. Tanaci, Z. Aksu, Potential use of cotton plant wastes for the removal of Remazol black B reactive dye, J. Hazard. Mater., 163 (2009) 187–198.
  39. Y. Hamzeh, A. Ashori, E. Azadeh, A. Abdulkhani, Removal of Acid orange 7 and Remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent, Mater. Sci. Eng., C, 32 (2012) 1394–1400.
  40. W. Zhang, H. Yan, H. Li, Z. Jiang, L. Dong, X. Kan, H. Yang, A. Li, R. Cheng, Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies, Chem. Eng. J., 168 (2011) 1120–1127.
  41. D. Uçar, B. Armağan, The removal of Reactive Black 5 from aqueous solutions by cotton seed shell, Water Environ. Res., 84 (2012) 323–327.
  42. T. Jóźwiak, U. Filipkowska, J. Rodziewicz, A. Mielcarek, D. Owczarkowska, Application of compost as a cheap sorbent for dyes removal from aqueous solutions | Zastosowanie kompostu jako taniego sorbentu do usuwania barwnik?w z roztwor?w wodnych, Rocz. Ochr. Sr., 15 (2013).
  43. P. Pengthamkeerati, T. Satapanajaru, N. Chatsatapattayakul, P. Chairattanamanokorn, N. Sananwai, Alkaline treatment of biomass fly ash for reactive dye removal from aqueous solution, Desalination, 261 (2010) 34–40.
  44. M.M. Felista, W.C. Wanyonyi, G. Ongera, Adsorption of anionic dye (Reactive Black 5) using macadamia seed husks: kinetics and equilibrium studies, Sci. Afr., 7 (2020) e00283, doi: 10.1016/J.SCIAF.2020.E00283.
  45. J.F. Osma, V. Saravia, J.L. Toca-Herrera, S.R. Couto, Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions, J. Hazard. Mater., 147 (2007) 900–905.
  46. T. Józwiak, U. Filipkowska, P. Bugajska, T. Kalkowski, The use of coconut shells for the removal of dyes from aqueous solutions, J. Ecol. Eng., 19 (2018) 129–135.
  47. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, Removal of rhodamine b from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies, J. Chem. Eng. Data, 55 (2010) 5777–5785.
  48. K. Porkodi, K. Vasanth Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater., 143 (2007) 311–327.
  49. M.S. Mahmoud, Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain, HBRC J., 12 (2016) 88–98.
  50. C. Namasivayam, N. Kanchana, R.T. Yamuna, Waste banana pith as adsorbent for the removal of rhodamine-B from aqueous solutions, Waste Manage., 13 (1993) 89–95.
  51. S. Kaur, T.P.S. Walia, I. Kansal, Removal of Rhodamine-B by adsorption on walnut shell charcoal, J. Surf. Sci. Technol., 24 (2008) 179–193.
  52. M.V. Sureshkumar, C. Namasivayam, Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith, Colloids Surf., A, 317 (2008) 277–283.
  53. H. Parab, M. Sudersanan, N. Shenoy, T. Pathare, B. Vaze, Use of agro-industrial wastes for removal of basic dyes from aqueous solutions, Clean – Soil, Air, Water, 37 (2009) 963–969.
  54. T. Jóźwiak, U. Filipkowska, P. Zajko, Use of citrus fruit peels (grapefruit, mandarin, orange, and lemon) as sorbents for the removal of Basic Violet 10 and Basic red 46 from aqueous solutions, Desal. Water Treat., 163 (2019) 385–397.
  55. M. Zamouche, O. Hamdaoui, Sorption of Rhodamine B by cedar cone: effect of pH and ionic strength, Energy Procedia, 18 (2012) 1228–1239.
  56. T.A. Khan, S. Sharma, I. Ali, Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies, J. Toxicol. Environ. Health Sci., 3 (2011) 286–297.
  57. K. Shen, M.A. Gondal, Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground, J. Saudi Chem. Soc., 21 (2017) S120–S127.
  58. S. Papić, N. Koprivanac, A. Lončarić Božić, A. Meteš, Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process, Dyes Pigm., 62 (2004) 291–298.