1. V. Memet, S. Bülent, Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey, CATENA, 92 (2012) 1–10.
  2. D. Daby, Coastal pollution and potential biomonitors of metals in Mauritius, Water, Air, Soil Pollut., 174 (2006) 63–91.
  3. H. Huang, J.Y. Wu, J.H. Wu, Heavy metal monitoring using bivalved shellfish from Zhejiang coastal waters, East China Sea, Environ. Monit. Assess., 129 (2007) 315–320.
  4. J.V. Rao, P. Kavitha, K. Srikanth, P.K. Usman, T.G. Rao, Environmental contamination using accumulation of metals in marine sponges, Sigmadocia fibulata inhabiting the coastal waters of Gulf of Mannar, India, Toxicol. Environ. Chem., 89 (2007) 487–498.
  5. K. Sultan, A.S. Noor, P. Stefan, Distribution of Pb, As, Cd, Sn and Hg in soil, sediment and surface water of the tropical river watershed, Terengganu (Malaysia), J. Hydro-Environ. Res., 5 (2011) 169–176.
  6. C. Diop, D. Dewaele, A. Toure, M. Cabral, F. Cazier, M. Fall, B. Ouddane, A. Diouf, Study of sediment contamination by trace metals at wastewater discharge points in Dakar (Senegal), J. Water. Sci., 25 (2012) 277–285.
  7. G. Xuelu, C. Chen-Tung, Heavy metal pollution status in surface sediments of the coastal Bohai Bay, Water Resour. J., 46 (2012) 1901–1911.
  8. J.S. Ahn, Y.S. Park, J.Y. Kim, K.W. Kim, Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea, Environ. Geochem. Health, 27 (2005) 147–157.
  9. M.R. Lee, J.A. Correa, Effect of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of Northern Chile, Mar. Environ. Res., 59 (2005) 1–18.
  10. A.N. Roychoudhury, M.F. Starke, Partitioning and mobility of trace metals in the Blesbokspruit: impact assessment of dewatering of mine waters in the East Rand, South Africa, Appl. Geochem., 21 (2006) 1044–1063.
  11. R. D’adamo, M. Di Stasio, A. Fabbrochini, Migratory crustaceans as biomonitors of metal pollution in their nursery areas. The Lesina Lagoon (SE Italy) as a case study, Environ. Monit. Assess., 143 (2008) 15–24.
  12. R. Smolders, L. Bervoets, V. Wepener, R. Blust, A conceptual framework for using mussels as biomonitors in whole efflent toxicity, Hum. Ecol. Risk Assess., 9 (2003) 741–760.
  13. A.L. Gonçalves, C.M. Pires-Jose, M. Simões, A review on the use of microalgale consortia for wastewater treatment, Algal Res., 24 (2017) 403–415.
  14. B. Olfa, Wastewater Treatment in Multitrophic Bioreactors Using Bacterial Microalgae Flocs Recoverable as Biogas, Thesis Jointly Supervised by the University of Carthage (Tunisia) and the University of Lorraine (France), Domain: Engineering of Processes and Products and Molecules, Doctoral Schools, Sciences and Engineering of Molecules, Processes, Products and Energy and Sciences and Technologies for Engineers, INSAT, 2018.
  15. C.D. Calvano, F. Italiano, L. Catucci, A. Agostiano, T.R.I. Cataldi, F. Palmisano, M. Trotta, The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress, Biometals: An Int. J. Role Metal Ions Biol. Biochem. Med., 27 (2014) 65–73.
  16. M. Aryal, M. Liakopoulou-Kyriakides, Bioremoval of heavy metals by bacterial biomass, Environ. Monit. Assess., 187 (2015) 1–26.
  17. M. CorraL-Bobadilla, A. Gonzalez-Marcos, E. Vergara-Gonzalez, F. Alba-Elias, Bioremediation of waste water to remove heavy metals using the spent mushroom substrate of Agaricus bisporus, Water, 11 (2019) 454–468.
  18. M. Fazlzadeh, R. Khosravi, A. Zarei, Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution, Ecol. Eng., 103 (2017) 180–190.
  19. I. Gajda, A. Stinchcombe, J. Greenman, C. Melhuish, I. Ieropoulos, Microbial fuel cell: a novel self-powered wastewater electrolyser for electrocoagulation of heavy metals, Int. J. Hydrogen Energy, 42 (2017) 1813–1819.
  20. E. Daneshvar, R.J. Wicker, P.L. Show, A. Bhatnagar, Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – a review, Chem. Eng. J., 427 (2022) 130884, doi: 10.1016/j.cej.2021.130884.
  21. G. Sibi, Factors influencing heavy metal removal by microalgae-a review, J. Crit. Rev., 6 (2019) 29–32.
  22. A.J. Bora, R.K. Dutta, Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulationabsorption at optimized pH, J. Water Process Eng., 31 (2019) 100839, doi:10.22159/jcr.2019v6i6.35600.
  23. T. Kim, T.-K. Kim, K.-D. Zoh, Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes, J. Water Process Eng., 33 (2020) 101109, doi: 10.1016/j.jwpe.2019.101109.
  24. S.N. Francoeur, S.T. Rier, S.B. Whorley, In: J.T. Anderson, C.A. Davis, Eds., Methods for Sampling and Analyzing Wetland Algae Steven, Wetland Techniques, Volume 2: Organisms, Springer Science+Business Media, Dordrecht, 2013, pp. 1–58.
  25. E.G. Bellinger, D.C. Sigee, A Key to the More Frequently Occurring Freshwater Algae, Freshwater Algae: Identification and Use as Bioindicators, John Wiley & Sons, Ltd., Hoboken, 2010, pp. 137–244.
  26. N. Serediak, M.-L. Huynh, Algae Identification - Field Guide: An Illustrative Field Guide on Identifying Common Algae Found in the Canadian Prairies, Agriculture and Agri-Food, Agri-Environment Services Branch, Canada, 2011.
  27. S. Van Vuuren, J.C. Taylor, A. Gerber, C. Van Ginkel, Easy Identification of the Most Common Freshwater Algae, North-West University and Department of Water Affairs and Forestry, Pretoria, South Africa, 2006, pp. 1–200.
  28. H. Canter-Lund, J.W.G. Lund, Freshwater Algae: Their Microscopic World Explored (1995) (No. 582.26 CAN).
  29. K. Bajwa, N.R. Bishnoi, A. Kirrolia, J. Sharma, S. Gupta, Comparison of various growth media composition for physiobiochemical parameters of biodiesel producing microalgal species (Chlorococcum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella pyrenoidosa), Eur. J. Biotechnol. Biosci., 5 (2017) 27–31.
  30. K. Ga-Yeong, R. Kosan, H. Jong-In, The use of bicarbonate for microalgae cultivation and its carbon footprint analysis, Green Chem., 21 (2019) 5053–5062.
  31. A. Verma, M. Agarwal, S. Sharma, N. Singh, Competitive removal of cadmium and lead ions from synthetic wastewater using Kappaphycus striatum, Environ. Nanotechnol. Monit. Manage., 15 (2021) 100449, doi:10.1016/j.enmm.2021.100449.
  32. S. Li, S. Li, N. Wen, D. Wei, Y. Zhang, Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica, Sep. Purif. Technol., 265 (2021) 118341, doi:10.1016/j.seppur.2021.118341.
  33. M. Oves, M.S. Khan, A. Zaidi, Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil, Saudi J. Biol. Sci., 20 (2013) 121–129.
  34. R.R.L. Guillard, ‘Division Rates’, J.R. Stein, Ed., Handbook of Phycological Methods: Culture Methods and Growth Measurements, Cambridge University Press, London, 1973, pp. 289–311.
  35. P.S. Chandrashekharaiah, D. Sanyal, S. Dasgupta, A. Banik, Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: an integrated approach, Chemosphere, 269 (2021) 128755, doi: 10.1016/j.chemosphere.2020.128755.
  36. D.L. Findlay, S.E.M. Kasian, L.L. Hendzel, G.W. Regehr, E.U. Schindler, J.A. Shearer, Biomanipulation of Lake 221 in the experimental lakes area (ELA): effects on phytoplankton and nutrients, Can. J. Fish Aquat. Sci., 51 (1994) 2794–2807.
  37. S. Li, Y. Yu, X. Gao, Z. Yin, J. Bao, Z. Li, R. Chu, D. Hu, J. Zhang, L. Zhu, Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper, Bioresour. Technol., 342 (2021) 126064, doi: 10.1016/j.biortech.2021.126064.
  38. J. Hockaday, A. Harvey, S. Velasquez-Orta, A comparative analysis of the adsorption kinetics of Cu2+ and Cd2+ by the microalgae Chlorella vulgaris and Scenedesmus obliquus. Algal Res., 64 (2022) 102710, doi: 10.1016/j.algal.2022.102710.
  39. S. Morin, T.T. Duong, A. Dabrin, A. Coynel, O. Herlory, M. Baudrimont, F. Delmas, G. Durrieu, J. Schäfer,
    P. Winterton, G. Blanc, M. Coste, Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France, Environ Pollut., 151 (2008) 532–542.
  40. S. Morin, N. Gómez, E. Tornés, M. Licursi, J. Rosebery, Benthic Diatom Monitoring and Assessment of Freshwater Environments: Standard Methods and Future Challenges, A.M. Romaní, H. Guasch,
    M. Dolors Balaguer, Eds., Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment, Caister Academic Press, UK, 2016, pp. 111–124.
  41. N. Chaib, S. Dzizi, H. Kaddeche, F. Noune, Performance of a fixed‐bed bioreactor using diatom biofilms for wastewater bioremediation, Clean-Soil, Air, Water, 49 (2021) 2000282, doi: 10.1002/clen.202000282.
  42. A. Tiwari, T.K. Marella, Potential and Application of Diatoms for Industry-Specific Wastewater Treatment,
    S.K. Gupta, F. Bux, Eds., Application of Microalgae in Wastewater Treatment, Springer, Cham, 2019, pp. 321–339.
  43. S. Dwivedi, Bioremediation of heavy metal by algae: current and future perspective, J. Adv. Lab. Res. Biol., 3 (2012) 195–199.
  44. A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manage., 181 (2016) 817–831.
  45. B. Volesky, Biosorption of Heavy Metals, 1st ed., Published Auguesr 15, CRC Press, Boca Raton, 1990, 408 p.
  46. G.M. Gadd, Heavy metal accumulation by bacteria and other microorganisms, Experientia, 46 (1990) 834–840.
  47. S.K. Mehta, J.K. Gaur, Characterisation and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris, Ecol. Eng., 18 (2001) 1–13.
  48. R. Dixit, D. Malaviya, K. Pandiyan, U.B. Singh, A. Sahu, R. Shukla, D. Paul, Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes, Sustainability, 7 (2015) 2189–2212.
  49. N.F.Y. Tam, J.P.K. Wong, Y.S. Wong, Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption, Environ. Pollut., 114 (2001) 85–92.
  50. C.A. Mahan, V. Majidi, J.A. Holcombe, Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry, Anal. Chem., 61 (1989) 624–627.
  51. P.R. Pascucci, A.D. Kowalak, Public health benefits of using algae for simultaneous multiple metal extraction from waters, Rev. Environ. Health, 11 (1996) 205–212.
  52. Z. Lin, J. Li, Y. Luan, W. Dai, Application of algae for heavy metal adsorption: a 20-year meta-analysis, Ecotoxicol. Environ. Saf., 190 (2020) 110089, doi: 10.1016/j.ecoenv.2019.110089.
  53. E. El-Bestawy, Efficiency of immobilized cyanobacteria in heavy metals removal from industrial effluents, Desal. Water Treat., 159 (2019) 66–78.
  54. L. Travieso, R.O. Canizares, R. Borja, F. Benıtez, A.R. Domınguez, R. Dupeyron, V. Valiente, Heavy metal removal by microalgae, Bull. Environ. Contamin. Toxicol., 62 (1999) 144–151.
  55. S. Singh, S. Pradhan, L.C. Rai, Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry, Process Biochem., 36 (2000) 175–182.
  56. P.K. Rai, B.D. Tripathi, Removal of heavy metals by the nuisance cyanobacteria Microcystis in continuous cultures: an ecosustainable technology, Environ. Sci., 4 (2007) 53–59.
  57. S. Shanab, A. Essa, E. Shalaby, Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates), Plant Signaling Behav., 7 (2012) 1–8.
  58. U.K. Singh, B. Kumar, Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India, Chemosphere, 174 (2017) 183–199.
  59. M. Danouche, N. El Ghachtouli, H. El Arroussi, Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity, Heliyon, 7 (2021) e07609, doi: 10.1016/j.heliyon.2021.e07609.
  60. R. Piña-Olavide, L.M. Paz-Maldonado, M.C. Alfaro-De La Torre, M.J. García-Soto, A.E. Ramírez-Rodríguez,
    S. Rosales-Mendoza, R.F. García De la-Cruz, Increased removal of cadmium by Chlamydomonas reinhardtii modified with a synthetic gene for γ-glutamylcysteine synthetase, Int. J. Phytorem., 22 (2020) 1269–1277.
  61. X. Ma, Y. Chen, F. Liu, S. Zhang, Q. Wei, Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water, Algal Res., 55 (2021) 102267, doi: 10.1016/j.algal.2021.102267.
  62. J. Ye, H. Xiao, B. Xiao, W. Xu, L. Gao, G. Lin, Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticte, Water Sci. Technol., 72 (2015) 1662–1666.