1. G. Przydatek, W. Kanownik, Impact of small municipal solid waste landfill on groundwater quality, Environ. Monit. Assess., 191 (2019), doi: 10.1007/s10661-019-7279-5.
  2. P. Negi, S. Mor, K. Ravindra, Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment, Environ. Dev. Sustainability, 22 (2020) 1455–1474.
  3. J.R. Masoner, D.W. Kolpin, E.T. Furlong, I.M. Cozzarelli, J.L. Gray, Landfill leachate as a mirror of today’s disposable society: pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States, Environ. Toxicol. Chem., 35 (2015) 906–918.
  4. J.R. Masoner, D.W. Kolpin, E.T. Furlong, I.M. Cozzarelli, J.L. Gray, E.A. Schwab, Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States, Environ. Sci. Processes Impacts, 16 (2014) 2335–2354.
  5. S. Mishra, D. Tiwary, A. Ohri, A.K. Agnihotri, Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India, Groundwater Sustainable Dev., 9 (2019) 100230, doi: 10.1016/j.gsd.2019.100230.
  6. A.H. Baghanam, V. Nourani, H. Aslani, H. Taghipour, Spatiotemporal variation of water pollution near landfill site: application of clustering methods to assess the admissibility of LWPI, J. Hydrol., 591 (2020) 125581, doi:10.1016/j. jhydrol.2020.125581.
  7. F. Parvin, S.M. Tareq, Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment, Appl. Water Sci., 11 (2021) 1–17, doi: 10.1007/s13201-021-01431-3.
  8. M.D. Vaverková, E.K. Paleologos, A. Dominijanni, E. Koda, C.-S. Tang, M. Wdowska, Q. Li, N. Guarena,
    A.-M.O. Mohamed, C.S. Vieira, M. Manassero, B.C. O’Kelly, X. Qifeng, M.W. Bo, D. Adamcová, A. Podlasek, M. Uday, M. Anand, A. Mohammad, V.S.N.S. Goli, G. Kuntikana, E.M. Palmeira, S. Pathak, D.N. Singh, Municipal solid waste management under COVID- 19: challenges and recommendations, Environ. Geotech., 8 (2021) 217–232.
  9. D. Abiriga, L.S. Vestgarden, H. Klempe, Groundwater contamination from a municipal landfill: effect of age, landfill closure, and season on groundwater chemistry, Sci. Total Environ., 737 (2020) 140307, doi: 10.1016/j.scitotenv.2020.140307.
  10. L.M.S. Pandey, S.K. Shukla, An insight into waste management in Australia with a focus on landfill technology and liner leak detection, J. Cleaner Prod., 225 (2019) 1147–1154.
  11. K. Papapetridis, E.K. Paleologos, Contaminant detection probability in heterogeneous aquifers and corrected risk analysis for remedial response delay, Water Resour. Manage., 47 (2011) 15, doi: 10.1029/2011WR010652.
  12. K. Papapetridis, E.K. Paleologos, Stochastic Modeling of Plume Evolution and Monitoring into Heterogeneous Aquifers, N. Lambrakis, G. Stournaras, K. Katsanou, Eds., Advances in the Research of Aquatic Environment. Environmental Earth Sciences, Springer, Berlin, Heidelberg, 2011, pp. 349–356.
  13. K. Papapetridis, E.K. Paleologos, Sampling frequency of groundwater monitoring and remediation delay at contaminated sites, Water Resour. Manage., 26 (2012) 2673–2688.
  14. D. Zeng, G. Chen, P. Zhou, H. Xu, A. Qiong, B. Duo, X. Lu, Z. Wang, Z. Han, Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau, Ecotoxicol. Environ. Saf., 211 (2021) 111913, doi: 10.1016/j.ecoenv.2021.111913.
  15. M. Lech, J. Fronczyk, M. Radziemska, A. Sieczka, K. Garbulewski, E. Koda, Z. Lechowicz, Monitoring of total dissolved solids on agricultural lands using electrical conductivity measurements, Appl. Ecol. Environ. Res., 14 (2016) 285–295.
  16. E. Koda, A. Tkaczyk, M. Lech, P. Osiński, Application of electrical resistivity data sets for the evaluation of the pollution concentrations level within landfill subsoils, Appl. Sci., 7 (2017) 262, doi: 10.3390/app7030262.
  17. E. Koda, Influence of vertical barrier surrounding old sanitary landfill on eliminating transport of pollutants on the basis of numerical modeling and monitoring results, Pol. J. Environ. Stud., 21 (2012) 929–935.
  18. S. Thangaperumal, A study of groundwater quality and mapping using GIS techniques in Kodungaiyur, Chennai, Int. J. Adv. Res. Ideas Innovations Technol., 5 (2019) 618–624.
  19. K. Kalawapudi, O. Dube, R. Sharma, Use of neural networks and spatial interpolation to predict groundwater quality, Environ. Dev. Sustain., 22 (2020) 2801–2816.
  20. M.A. Nanda, A.K. Wijayanto, H. Imantho, L.O. Nelwan, I.W. Budiastra, K.B. Seminar, Factors determining suitable landfill sites for energy generation from municipal solid waste: a case study of Jabodetabek Area, Indonesia, Sci. World J., 2022 (2022) 9184786, doi: 10.1155/2022/9184786.
  21. M. Derakhshandeh, T. Taleb Beydokhti, Management of landfill locating of urban waste, Eur. Online J. Nat. Soc., 3 (2014) 32–39.
  22. C. Simsek, A. Elci, O. Gunduz, N. Taskin, An improved landfill site screening procedure under NIMBY syndrome constraints, Landscape Urban Plann., 132 (2014) 1–15, doi: 10.1016/j. landurbplan.2014.08.007.
  23. S. Dolui, S. Sarkar, Identifying potential landfill sites using multicriteria evaluation modeling and GIS techniques for Kharagpur city of West Bengal, India, Environ. Challenges, 5 (2021) 100243, doi: 10.1016/j.envc.2021.100243.
  24. E. Jahan, A. Nessa, M.F. Hossain, Z. Parveen, Characteristics of municipal landfill leachate and its impact on surrounding agricultural land, Bangladesh J. Sci. Res., 29 (2016) 31–39.
  25. S.A. Urme, M.A. Radia, R. Alam, M.U. Chowdhury, S. Hasan, S. Ahmed, H.H. Sara, M.S. Islam, D.T. Jerin, P.S. Hema, M. Rahman, A.K.H.M. Islam, M.T. Hasan, Z. Quayyum, Dhaka landfill waste practices: addressing urban pollution and health hazards, Build. Cities, 2 (2021) 700–716.
  26. N.S.I. Sharifah, A.M. Latifah, The challenge of future landfill: a case study of Malaysia, J. Toxicol. Environ., 5 (2013) 86–96.
  27. M.D. Vaverková, E.K. Paleologos, D. Adamcová, A. Podlasek, G. Pasternak, J. Červenková, Z. Skutnik, E. Koda, J. Winkler, Municipal solid waste landfill: evidence of the effect of applied landfill management on vegetation composition, Waste Manage. Res., 0734242X221079304 (2022) 1–10, doi: 10.1177/0734242X221079304.
  28. M.D. Vaverková, D. Adamcová, J. Winkler, E. Koda, P. Petrželová, A. Maxianová, Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: benefits and risks, Sci. Total Environ., 723 (2020) 137971, doi: 10.1016/j.scitotenv.2020.137971.
  29. A. Podlasek, A. Jakimiuk, M.D. Vaverková, E. Koda, Monitoring and assessment of groundwater quality at landfill sites: selected case studies of Poland and the Czech Republic, Sustainability, 13 (2021) 7769, doi: 10.3390/su13147769.
  30. B. Balatka, T. Czudek, J. Demek, Regional division of the relief of Czechoslovakia, Proceedings of the CSSA, 78 (1973) 81–96 (in Czech).
  31. Collection of Laws, Decree 83/2014 Coll. Amending Decree 252/2004 Coll., Which Sets Out the Sanitary Requirements for Drinking and Hot Water and the Frequency and Scope of Drinking Water Control, as Amended, 2014, Praha, 33 p.
  32. ČSN 75 7143, Water Quality for Irrigation, Publishing of Standards, Prague, 1992 (in Czech).
  33. Ireland’s EPA, Parameters of Groundwater Quality, Interpretation and Standards, Environmental Protection Agency, Ireland, 2001.
  34. US EPA, Edition of the Drinking Water Standards and Health Advisories Tables, U.S. Environmental Protection Agency, Washington, 2018.
  35. World Health Organization (WHO), Guidelines for Drinking- Water Quality (World Health Organization), 4th ed., Geneva, Switzerland, 2011, 542 p.
  36. ČSN ISO 10523, Water Quality, Determination of pH (in Czech).
  37. ČSN EN 27 888, Water Quality, Determination of Electrical Conductivity (in Czech).
  38. ČSN ISO 7150-1, Water Quality, Determination of Ammonium Ions. Part 1: Manual Spectrometric Method (in Czech).
  39. ČSN ISO 7890-3, Water Quality, Determination of Nitrate – Part 3: Spectrometric Method Using Sulfosalicylic Acid (in Czech).
  40. ČSN EN 26 777, Water Quality, Determination of Nitrite, Molecular Absorption Spectrometric Method (in Czech).
  41. ČSN ISO 11083, Water Quality, Determination of Chromium(VI), Spectrophotometric method
    with 1,5-diphenylcarbazide (in Czech).
  42. J. Hair, R. Anderson, R. Tatham, W. Black, Multivariate Data Analysis, 5th ed., Prentice Hall, Upper Saddle River, NJ, 1998.
  43. S. Sharma, Applied Multivariate Techniques, Wiley, New York, 1996.
  44. M. Vega, R. Pardo, E. Barrado, L. Deban, Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res., 32 (1998) 3581–3592.
  45. I. Jolliffe, Principal Component Analysis, 2nd ed., Springer, New York, 2002.
  46. E.K. Paleologos, M.T. Al Nahyan, S. Farouk, K. Papapetridis, Ensemble Contaminant Transport Modelling and Bayesian Decision-Making of Groundwater Monitoring, Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire, 2015, 10 pp.
  47. M.M.A. El-Salam, G.I. Abu-Zuid, Impact of landfill leachate on the groundwater quality: a case study in Egypt, J. Adv. Res., 6 (2015) 579–586.
  48. K. Karthik, R. Mayildurai, R. Mahalakshmi, S. Karthikeyan, Physicochemical analysis of groundwater quality of Velliangadu Area in Coimbatore District, Tamil Nadu, India, Rasayan J. Chem., 12 (2019) 409–414.
  49. O.O. Ololade, S. Mavimbela, S.A. Oke, R. Makhadi, Impact of leachate from northern landfill site in bloemfontein on water and soil quality: implications for water and food security, Sustainability, 11 (2019) 4238, doi: 10.3390/su11154238.
  50. D. Dąbrowska, A. Witkowski, M. Sołtysiak, Representativeness of the groundwater monitoring results in the context of its methodology: case study of a municipal landfill complex in Poland, Environ. Earth Sci., 77 (2018) 266, doi: 10.1007/s12665-018-7455-x.
  51. J.K. Böhlke, R.L. Smith, D.N. Miller, Ammonium transport and reaction in contaminated groundwater: application of isotope tracers and isotope fractionation studies, Water Resour. Res., 42 (2006), doi: 10.1029/2005WR004349.
  52. E. Koda, A. Sieczka, P. Osiński, Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland, Sustainability, 8 (2016) 1253, doi: 10.3390/su8121253.
  53. N.M. Dubrovsky, K.R. Burow, G.M. Clark, J.M. Gronberg, P.A. Hamilton, K.J. Hitt, D.K. Mueller, M.D. Munn,
    B.T. Nolan, L.J. Puckett, M.G. Ruper, T.M. Short, N.E. Spahr, L.A. Sprague, W.G. Wilber, The Quality of Our Nation’s Waters—Nutrients in the Nation’s Streams and Groundwater, 1992–2004: (No. 1350), U.S. Geological Survey Circular, 2010.
  54. R. Cossu, L.E. Zuffianò, P.P. Limoni, G. De Giorgio, P. Pizzardin, T. Miano, D. Mondelli, R. Garavaglia, C. Carella, M. Polemio, M., How can the role of leachate on nitrate concentration and groundwater quality be clarified? An approach for landfills in operation (Southern Italy), Waste Manage., 77 (2018) 156–165.
  55. J. Wu, W.D. Zhao, J. Lu, S. Jin, J.Q. Wang, J.Z. Qian, Geographic information system based approach for the investigation of groundwater nitrogen pollution near a closed old landfill site in Beijing, China, Environ. Eng. Manage. J., 17 (2018) 1095–1101.
  56. Z. Han, S. Wang, J. Zhao, X. Hu, Y. Fei, M. Xu, Identification of nitrogen-sources in an aquifer beneath a municipal solid waste landfill in the vicinity of multiple pollutant sources, J. Environ. Manage., 268 (2020) 110661, doi: 10.1016/j.jenvman.2020.110661.
  57. E. Koda, A. Miszkowska, A. Sieczka, P. Osiński, Heavy metals contamination within restored landfill site in Poland, Environ. Geotech., 7 (2020) 512–521.
  58. T. Alemayehu, G. Mebrahtu, A. Hadera, D.N. Bekele, Assessment of the impact of landfill leachate on groundwater and surrounding surface water: a case study of Mekelle city, Northern Ethiopia, Sustain. Water Resour. Manage., 5 (2019) 1641–1649.
  59. Pinfohouse (Pollution Prevention Services, Iowa Department of Natural Resources) Anatomy of a Tire. Available at: (Accessed March 30, 2021).
  60. J.A. Izbicky, J.W. Ball, T.D. Bullen, S.J. Sutley, Chromium, chromium isotopes and selected trace elements, western Mojave Desert, California, Appl. Geochem., 23 (2008) 1325–1352.
  61. A.F. Adamczyk, A. Haładus, Zanieczyszczenie chromem wód podziemnych i powierzchniowych w rejonie składowisk Z.Ch. Alwernia, Mat. Konf. Geochemiczne. Hydrochemiczne i biochemiczne zmiany środowiska przyrodniczego na obszarach objętych antropopresją. Analiza stanu, prognoza, zapobieganie, Wyd. AGH Kraków, 1991 (in Polish).
  62. C.O. Akinbile, Environmental impact of landfill on groundwater quality and agricultural soils in Nigeria, Soil Water Res., 7 (2012) 18–26.
  63. J.W. Ball, J.A. Izbicky, Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California, Appl. Geochem., 19 (2004) 1123–1135.
  64. California Water Boards 2018, Maximum Contaminant Levels and Regulatory Dates for Drinking Water, U.S. EPA vs California, Last Updated October 2018. Available at: drinkingwater/documents/ccr/mcls_epa_vs_dwp.pdf (accessed March 10, 2021).
  65. World Health Organization (WHO), Chromium in Drinking- Water, Draft Background Document for Development of WHO Guidelines for Drinking-Water, 2019. Available at https://www. chemicals/draft-chromium-190924.pdf (Accessed March 10, 2021).
  66. B. Hölting, Hydrogeologie, 4 Aufl., F. Enke Edit. Stuttgart, 1992.
  67. E.K. Paleologos, Stochastic Flow and Particle Tracking Modeling for Contaminant Detection in Shallow, Heterogeneous Aquifers, Univers. J. Math. Math. Sci., 5 (2014) 149.
  68. C.W. Liu, K.H. Lin, Y.M. Kuo, Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, Sci. Total Environ., 313 (2003) 77–89.