1. D. Taylor, T. Senac, Human pharmaceutical products in the environment – the “problem” in perspective, Chemosphere, 115 (2014) 95–99.
  2. J. Robles-Molina, F.J. Lara-Ortega, B. Gilbert-López, J.F. García-Reyes, A. Molina-Díaz, Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry, J. Chromatogr. A, 1350 (2014) 30–43.
  3. U.E. Bollmann, C. Tang, E. Eriksson, K. Jönsson, J. Vollertsen, K. Bester, Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources, Water Res., 60 (2014) 64–74.
  4. J. Chen, Y.S. Liu, W.J. Deng, G.G. Ying, Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland, Sci. Total Environ., 660 (2019) 358–365.
  5. T.F.T. Omar, A. Ahmad, A.Z. Aris, F.M. Yusoff, Endocrine disrupting compounds (EDCs) in environmental matrices: review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds, TrAC, Trends Anal. Chem., 85 (2016) 241–259.
  6. K. Styszko, K. Proctor, E. Castrignanò, B. Kasprzyk-Hordern, Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland, Sci. Total Environ., 768 (2021) 144360, doi: 10.1016/j. scitotenv.2020.144360.
  7. K. Styszko, J. Durak, A. Malicka, T. Bochnia, T. Żaba, The occurrence of chemicals of emerging concern in samples of surface water and wastewater collected in Kraków, Poland, Desal. Water Treat., 232 (2021) 308–323.
  8. The European Parliament and the Council of the European Union, Directives 2013/39/EU of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy, Off. J. Eur. Union., 2013, pp. 1–17.
  9. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  10. K. Miksch, E. Felis, J. Kalka, A. Sochacki, J. Drzymała, Micropollutants in the environment: occurrence, interactions and elimination, Rocz. Ochr. Sr., 18 (2016) 1–84.
  11. T.A. Larsen, K.M. Udert, J. Lienert, Source Separation and Decentralization for Wastewater Management, IWA Publishing, London, 2019. Available at doi:10.1002/9780470 925386.ch5
  12. B. Grzmil, J. Wronkowski, Removal of phosphates and fluorides from industrial wastewater, Desalination, 189 (2006) 261–268.
  13. P. Pal, R. Kumar, Treatment of coke wastewater: a critical review for developing sustainable management strategies, Sep. Purif. Rev., 43 (2014) 89–123.
  14. K.P. Singh, A. Malik, D. Mohan, S. Sinha, V.K. Singh, Chemometric data analysis of pollutants in wastewater – a case study, Anal. Chim. Acta, 532 (2005) 15–25.
  15. U. Sollfrank, W. Gujer, Characterisation of domestic wastewater for mathematical modelling of the activated sludge process, Water Sci. Technol., 23 (1991) 1057–1066.
  16. A. Mojiri, J. Zhou, M. Vakili, H. Van Le, Removal performance and optimisation of pharmaceutical micropollutants from synthetic domestic wastewater by hybrid treatment, J. Contam. Hydrol., 235 (2020) 103736, doi: 10.1016/j.jconhyd.2020.103736.
  17. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, Water Res., 43 (2009) 363–380.
  18. G. Dong, B. Chen, B. Liu, L.J. Hounjet, Y. Cao, S.R. Stoyanov, M. Yang, B. Zhang, Advanced oxidation processes in microreactors for water and wastewater treatment: development, challenges, and opportunities, Water Res., 211 (2022) 118047, doi: 10.1016/j.watres.2022.118047.
  19. S.C. Ameta, R. Ameta, Advanced Oxidation Processes for Waste Water Treatment, Elsevier, Amsterdam, 2018. Available at doi:0.1016/C2016-0-00384-4
  20. M.A. Ferraz, R.B. Choueri, Í.B. Castro, C. Simon da Silva, F. Gallucci, Influence of sediment organic carbon on toxicity depends on organism’s trophic ecology, Environ. Pollut., 261 (2020) 114134, doi:10.1016/j.envpol.2020.114134.
  21. K. Barbusiński, Intensification of the Wastewater Treatment Process and Stabilization of Excess Sludge with the Use of Fenton’s Reagent, Silesian University of Technology, Gliwice, 2004 (in Polish).
  22. ISO International Organization for Standardization, Water Quality — Determination of the Chemical Oxygen Demand Index (ST-COD) — Small-Scale Sealed-Tube Method (ISO 15705:2005), (n.d.).
  23. H. Mamane, Impact of particles on UV disinfection of water and wastewater, Rev. Chem. Eng., 24 (2008) 67–157.
  24. C.W. McKinney, A. Pruden, Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater, Environ. Sci. Technol., 46 (2012) 13393–13400.
  25. A. Niemczykowska, E. Kudłek, M. Dudziak, The Role of UV Irradiation in Water and Wastewater Treatment, Inżynieria Środowiska – Młodym Okiem, 2017, pp. 54–74 (in Polish).
  26. Environmental Protection Agency (EPA), Water Treatment Manual: Disinfection, 2013.
  27. Ordinance of the Minister of the Environment, Ordinance of the Minister of the Environment on Substances Particularly Harmful to the Aquatic Environment and on the Conditions to be Met When Discharging Sewage into Waters or Soil, as Well as When Discharging Rainwater or Meltwater into Waters or Into, Polish Laws, 2019, pp. 1–49.
  28. Y.W. Kang, K.Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water Res., 34 (2000) 2786–2790.
  29. B.D. Lee, M. Hosomi, A hybrid Fenton oxidation-microbial treatment for soil highly contaminated with benz(a)anthracene, Chemosphere, 43 (2001) 1127–1132.
  30. A.L. Kowal, Water purification: chemical or biological?, Environ. Prot., 1 (1991) 3–5 (in Polish).
  31. J. Araña, E. Tello Rendón, J.M. Doa Rodríguez, J.A. Herrera Melián, O. González Díaz, J. Pérez Pea, Highly concentrated phenolic wastewater treatment by the photo-Fenton reaction, mechanism study by FTIR-ATR, Chemosphere, 44 (2001) 1017–1023.
  32. W.Z. Tang, C.P. Huang, 2,4-Dichlorophenol oxidation kinetics by Fenton’s reagent, Environ. Technol. ISSN, 17 (1996) 1371–1378.
  33. S.G. Schrank, H.J. José, R.F.P.M. Moreira, H.F. Schröder, Applicability of fenton and H2O2/UV reactions in the treatment of tannery wastewaters, Chemosphere, 60 (2005) 644–655.
  34. V. Leifeld, T.P.M. dos Santos, D.W. Zelinski, L. Igarashi-Mafra, Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater, J. Environ. Manage., 222 (2018) 284–292.
  35. O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev., 93 (1993) 671–698.
  36. P.Y. Bruice, Organic Chemistry, 8th ed., Pearson, London, 2016.
  37. E. Bezak-Mazur, L. Dąbek, The use of modern oxidizing agents for the removal of selected dyes from aqueous solutions, Eng. Environ. Prot., 12 (2009) 143–151 (in Polish).
  38. M. Dudziak, The impact of complex oxidizing process on toxicity of water containing bisphenol A, Proc. ECOpole, 9 (2015) 15–17 (in Polish).
  39. C. Afonso-Olivares, C. Fernández-Rodríguez, R.J. Ojeda- González, Z. Sosa-Ferrera, J.J. Santana-Rodríguez,
    J.M.D. Rodríguez, Estimation of kinetic parameters and UV doses necessary to remove twenty-three pharmaceuticals from pre-treated urban wastewater by UV/H2O2, J. Photochem. Photobiol., A, 329 (2016) 130–138.
  40. I. Kim, N. Yamashita, H. Tanaka, Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments, Chemosphere, 77 (2009) 518–525.
  41. I. Kim, N. Yamashita, H. Tanaka, Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166 (2009) 1134–1140.
  42. G. Del Moro, A. Mancini, G. Mascolo, C. Di Iaconi, Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates, Chem. Eng. J., 218 (2013) 133–137.
  43. D. Dąbrowska, A. Kot-Wasik, J. Namieśnik, Degradation of organic compounds in the environment, Ecol. Chem. Eng. S, 9 (2002) 1077–1096.
  44. J.S. Miller, Kinetics of degradation of selected xenobiotics in aqueous solutions by photochemical methods, Sci. Notebooks Sci. Diss., 401 (2011) 3–94 (in Polish).
  45. J. Wąsowski, A. Piotrowska, Decomposition of organic water pollutants in the processes of advanced oxidation, Environ. Prot., 2 (2002) (in Polish).
  46. A. Ardila-Arias, E. Arriola-Villaseñor, W. Álvarez-Gómez, J. Hernández-Maldonado, T. Zepeda-Partida,
    L. Ortiz-Frade, R. Barrera-Zapata, Degradation of ethylene glycol through photo-Fenton heterogeneous system, Water Res., 18 (2019) 91–109.
  47. W. Qiu, M. Zheng, J. Sun, Y. Tian, M. Fang, Y. Zheng, T. Zhang, C. Zheng, Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos, Sci. Total Environ., 651 (2019) 1457–1468.
  48. H.Y. Shu, M.C. Chang, W.P. Hsieh, Remedy of dye manufacturing process effluent by UV/H2O2 process, J. Hazard. Mater., 128 (2006) 60–66.
  49. T. Yonar, K. Kestioglu, N. Azbar, Treatability studies on domestic wastewater using UV/H2O2 process, Appl. Catal., B, 67 (2006) 223–228.
  50. I. Sadowska-Bartosz, S. Galiniak, G. Bartosz, Fenton’s reagent, COSMOS. Probl. Biol. Sci., 63 (2014) 309–314 (in Polish).
  51. H. Zhang, X. Ran, X. Wu, Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor, J. Hazard. Mater., 241–242 (2012) 259–266.
  52. H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo- Fenton and Fenton oxidation of recalcitrant wastewater from the wooden floor industry, Water Environ. Res., 87 (2015) 491–497.
  53. E.T. Wahyuni, M.S.R. Roto, V. Anggraini, N.F. Leswana, A.C. Vionita, Photodegradation of detergent anionic surfactant in wastewater using UV/TiO2/H2O2 and UV/Fe2+/H2O2 processes, Am. J. Appl. Chem., 4 (2016) 174, doi: 10.11648/j.ajac.20160405.13.
  54. B. Kordestani, A. Takdastan, R. Jalilzadeh Yengejeh, A.K. Neisi, Photo-Fenton oxidative of pharmaceutical wastewater containing meropenem and ceftriaxone antibiotics: influential factors, feasibility, and biodegradability studies, Toxin Rev., 39 (2020) 292–302.
  55. N. Klamerth, S. Malato, M. Maldonado, A. Aguery, A. Fernandez-Alba, Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal, CEUR Workshop Proc., 1542 (2015) 33–36.