1. M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollut., 200 (2009) 59–77.
  2. Y. Li, Q. Zhou, B. Ren, J. Luo, J. Yuan, X. Ding, H. Bian, X. Yao, Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017, Rev. Environ. Contam. Toxicol., 251 (2020) 1–24.
  3. D.J. Paustenbach, B.L. Finley, F.S. Mowat, B.D. Kerger, Human health risk and exposure assessment of chromium(VI) in tap water, J. Toxicol. Environ. Health Part A, 66 (2001) 1295–1339.
  4. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C. Mabuni, A critical assessment of chromium in the environment, Crit. Rev. Env. Sci. Technol., 29 (1999) 1–46.
  5. G. Choppala, N. Bolan, J.H. Park, Chapter Two – Chromium Contamination and Its Risk Management in Complex Environmental Settings, In: Advances in Agronomy, Vol. 120, 2013, pp. 129–172.
  6. D.A. Eastmond, J.T. MacGregor, R.S. Slesinski, Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement, Crit. Rev. Toxicol., 38 (2008) 173–190.
  7. D. Pradhan, L.B. Sukla, M. Sawyer, P.K.S.M. Rahman, Recent bioreduction of hexavalent chromium in wastewater treatment: a review, J. Ind. Eng. Chem., 55 (2017) 1–20.
  8. K. Zhu, Y. Duan, F. Wang, P. Gao, H. Jia, C. Ma, C. Wang, Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption, Chem. Eng. J., 311 (2017) 236–246.
  9. S. Rengaraj, K.H. Yeon, S.H. Moon, Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater., 87 (2001) 273–287.
  10. V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res., 45 (2011) 2207–2212.
  11. D. Mamais, C. Noutsopoulos, L. Kavallaris, E. Nyktari, A. Kaldis, E. Panousi, N. George, A. Kornilia, M. Nasioka, Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations, Chemosphere, 152 (2016) 238–244.
  12. Q. Zhou, Y. Liu, T. Li, H. Zhao, S.A. Daniel, W. Liu, O.K. Kurt, Cadmium adsorption to clay-microbe aggregates: implications for marine heavy metals cycling, Geochim. Cosmochim. Acta, 290 (2020) 124–136.
  13. M. Narayani, K. Vidya Shetty, Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review, Crit. Rev. Env. Sci. Technol., 43 (2013) 955–1009.
  14. P.M. Fernández, S.C. Viñarta, A.R. Bernal, E.L. Cruz, L.I.C. Figueroa, Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives, Chemosphere, 208 (2018) 139–148.
  15. R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review, Chemosphere, 207 (2018) 255–266.
  16. F.J. Acevedo-Aguilar, A.E. Espino-Saldaña, I.L. Leon-Rodriguez, M.E. Rivera-Cano, M. Avila-Rodriguez, K. Wrobel, K. Wrobel, P. Lappe, M. Ulloa, J.F. Gutiérrez-Corona, Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes, Can. J. Microbiol., 52 (2006) 809–815.
  17. R. Batool, K. Yrjala, S. Hasnain, Hexavalent chromium reduction by bacteria from tannery effluent, J. Microbiol. Biotechnol., 22 (2012) 547–554.
  18. A. Bingol, H. Ucun, Y.K. Bayhan, A. Karagunduz, A. Cakici, B. Keskinler, Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast, Bioresour. Technol., 94 (2004) 245–249.
  19. V. Mary Kensa, Bioremediation – an overview, J. Ind. Pollut. Control, 27 (2011) 161–168.
  20. D. Onyancha, W. Mavura, J. Catherine Ngila, P. Ongoma, J. Chacha, Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum, J. Hazard. Mater., 158 (2008) 605–614.
  21. S. Siddiquee, R. Kobun, S. Al Azad, L. Naher, S. Saallah, P. Chaikaew, Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review, J. Microbiol. Biochem. Technol., 7 (2015) 384–393.
  22. P.A. Terry, Characterization of Cr ion exchange with hydrotalcite, Chemosphere, 57 (2004) 541–546.
  23. L. Mercier, C. Detellier, Preparation, characterization, and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite, Environ. Sci. Technol., 29 (1995) 1318–1323.
  24. O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini, E. Mentasti, Adsorption of heavy metals on
    Na-montmorillonite. Effect of pH and organic substances, Water Res., 37 (2003) 1619–1627.
  25. D. Wu, Y. Sui, S. He, X. Wang, C. Li, H. Kong, Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash, J. Hazard. Mater., 155 (2008) 415–423.
  26. M. Majdan, O. Maryuk, S. Pikus, E. Olszewska, R. Kwiatkowski, H. Skrzypek, Equilibrium, FTIR, scanning electron microscopy and small wide angle X-ray scattering studies of chromates adsorption on modified bentonite, J. Mol. Struct., 740 (2005) 203–211.
  27. V.J. Inglezakis, M. Stylianou, M. Loizidou, Ion exchange and adsorption equilibrium studies on clinoptilolite, bentonite and vermiculite, J. Phys. Chem. Solids, 71 (2010) 279–284.
  28. M.A. Stylianou, V.J. Inglezakis, M.D. Loizidou, A. Agapiou, G. Itskos, Equilibrium ion exchange studies of Zn2+, Cr3+, and Mn2+ on natural bentonite, Desal. Water Treat., 57 (2016) 27853–27863.
  29. Z. Li, S. Xu, G. Xiao, L. Qian, Y. Song, Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron, J. Environ. Manage., 244 (2019) 33–39.
  30. X. Lv, G. Jiang, X. Xue, D. Wu, T. Sheng, C. Sun, X. Xu, Fe0-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium(VI) removal, J. Hazard. Mater., 262 (2013) 748–758.
  31. J. Wu, X.-B. Wang, R.J. Zeng, Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: taking Cr(VI) removal as an example, J. Hazard. Mater., 333 (2017) 275–284.
  32. H. Xu, R.-x. Hao, X.-y. Xu, Y. Ding, A.-h. Lu, Y.-h. Li, Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation, Geomicrobiol. J., 38 (2021) 20–28.
  33. Y. Ding, R.-X. Hao, X.-Y. Xu, A.-h. Lu, H. Xu, Improving immobilization of Pb(II) ions by Aspergillus niger cooperated with photoelectron by anatase under visible light irradiation, Geomicrobiol. J., 36 (2019) 591–599.
  34. V. Gómez, M.P. Callao, Chromium determination and speciation since 2000, TrAC, Trends Anal. Chem., 25 (2006) 1006–1015.
  35. D. He, M. Zheng, T. Ma, J. Ni, Nitrite interference and elimination in diphenylcarbazide (DPCI) spectrophotometric determination of hexavalent chromium, Water Sci. Technol., 2 (2015) 223–229.
  36. Z. Liu, M.A. Uddin, Z. Sun, FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochim. Acta, Part A, 79 (2011) 1013–1016.
  37. A. Mansri, K.I. Benabadji, J. Desbrières, J. François, Chromium removal using modified poly(4-vinylpyridinium) bentonite salts, Desalination, 245 (2009) 95–107.
  38. M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou, M. Boufatit, Application of algerian bentonite in the removal of cadmium(II) and chromium(VI) from aqueous solutions, J. Surf. Eng. Mater. Adv. Technol., 4 (2014) 210–226.
  39. D. Park, Y.-S. Yun, J.M. Park, Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics, Process Biochem., 40 (2005) 2559–2565.
  40. U. Thacker, D. Madamwar, Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1, World J. Microbiol. Biotechnol., 21 (2005) 891–899.
  41. B. Dhal, H. Thatoi, N. Das, B.D. Pandey, Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product, J. Chem. Technol. Biotechnol., 85 (2010) 1471–1479.
  42. A.M. Gutierrez, J.J.P. Cabriales, M.M. Vega, Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland, Int. J. Phytorem., 12 (2010) 317–334.
  43. R.M. Bennett, P.R.F. Cordero, G.S. Bautista, G.R. Dedeles, Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples, Chem. Ecol., 29 (2013) 320–328.
  44. A.A. Al-Homaidan, H.S. Al-Qahtani, A.A. Al-Ghanayem, F. Ameen, I.B.M. Ibraheem, Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions, Saudi J. Biol. Sci., 25 (2018) 1733–1738.
  45. M.G. da Fonseca, M.M. de Oliveira, L.N.H. Arakaki, Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral, J. Hazard. Mater., 37 (2006) 288–292.
  46. M. Faatz, F. Gröhn, G. Wegner, Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization, Adv. Mater., 16 (2004) 996–1000.
  47. J. Miot, L. Remusat, E. Duprat, A. Gonzalez, S. Pont, M. Poinsot, Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer, Front. Microbiol., 6 (2015) 879, doi: 10.3389/fmicb.2015.00879.
  48. R.L. Kimber, H. Bagshaw, K. Smith, D.M. Buchanan, V.S. Coker, J.S. Cavet, J.R. Lloyd, Biomineralization of Cu2S nanoparticles by Geobacter sulfurreducens, Appl. Environ. Microbiol., 86 (2020),
    doi: 10.1128/AEM.00967-20.
  49. A.P. Das, S. Singh, Occupational health assessment of chromite toxicity among Indian miners, Indian J. Occup. Environ. Med., 15 (2011) 6–13.
  50. E.A. Ashour, M.A. Tony, Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay mineral: activation and modification effects, SN Appl. Sci., 2 (2020) 2042, doi: 10.1007/s42452-020-03873-x.
  51. M.K. Guria, A.K. Guha, M. Bhattacharyya, A green chemical approach for biotransformation of Cr(VI) to Cr(III), utilizing Fusarium sp. MMT1 and consequent structural alteration of cell morphology, J. Environ. Chem. Eng., 2 (2014) 424–433.
  52. L. Shi, J. Xue, B. Liu, P. Dong, Z. Wen, Z. Shen, Y. Chen, Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water, Ecotoxicol. Environ. Saf., 161 (2018) 430–436.
  53. A.L. Neal, K. Lowe, T.L. Daulton, J. Jones-Meehan, B.J. Little, Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction, Appl. Surf. Sci., 2 (2002) 150–159.
  54. M. Önal, Swelling and cation-exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments, Appl. Clay Sci., 37 (2007) 74–80.
  55. M. Holmboe, S. Wold, M. Jonsson, Porosity investigation of compacted bentonite using XRD profile modeling, J. Contam. Hydrol., 128 (2012) 19–32.
  56. A. Gupta, S.G. Bhagwat, J.K. Sainis, Synechococcus elongatus PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803, Biometals, 26 (2013) 309–319.
  57. Y. He, L. Dong, S. Zhou, Y. Jia, R. Gu, Q. Bai, J. Gao, Y. Li, H. Xiao, Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2, Ecotoxicol. Environ. Saf., 57 (2018) 417–423.