1. S. Baruah, N.M. Khan, J. Dutta, Perspectives and applications of nanotechnology in water treatment, Environ. Chem. Lett., 14 (2016) 1−14.
  2. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19 (2013) 1761−1769.
  3. H. Alalwan, A. Alminshid, An in-situ DRIFTS study of acetone adsorption mechanism on TiO2 nanoparticles, Spectrochim. Acta, Part A, 229 (2020) 117990, doi: 10.1016/j.saa.2019.117990.
  4. Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Adv. Mater., Special Issue: DICP’s 70th Anniversary Special Issue on Advanced Materials for Clean Energy, 31 (2019) 1901997, doi: 10.1002/adma.201901997.
  5. K.P. Gopinath, N.V. Madhav, A. Krishnan, R. Malolan, G. Rangarajan, Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: a review, J. Environ. Manage., 270 (2020) 110906, doi: 10.1016/j.jenvman.2020.110906.
  6. J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis: an emerging technology for water treatment, Catal. Today, 17 (1993) 7–20.
  7. R.F.P. Nogueira, W.F. Jardim, TiO2-fixed-bed reactor for water decontamination using solar light, Sol. Energy, 56 (1996) 471–477.
  8. I.G. Richardson, The nature of C-S-H in hardened cements, Cem. Concr. Res., 29 (1999) 1131–1147.
  9. A. Korpa, T. Kowald, R. Trettin, Hydration behaviour, structure and morphology of hydration phases in advanced cementbased systems containing micro and nanoscale pozzolanic additives, Cem. Concr. Res., 38 (2008) 955–962.
  10. G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cem. Concr. Res., 34 (2004) 1043–1049.
  11. K. Sobolev, M F. Gutiérrez, How nanotechnology can change the concrete world, Am. Ceram. Soc. Bull., 84 (2005) 16–20.
  12. J. Vera-Agullo, V. Chozas-Ligero, D. Portillo-Rico, M.J. García-Casas, A. Gutiérrez-Martínez, J.M. Mieres-Royo, J. Grávalos-Moreno, Mortar and Concrete Reinforced With Nanomaterials, Z. Bittnar, P.J.M. Bartos, J. Němeček, V. Šmilauer, J. Zeman, Eds., Nanotechnology in Construction 3, Springer, Berlin, Heidelberg, 2009, pp. 383–388.
  13. A. Nazari, S. Riahi, S. Riahi, S.F. Shamekhi, A. Khademno, Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles, J. Am. Sci., 6 (2010) 43–46.
  14. A. Karimipour, M. Ghalehnovi, J. de Brito, Effect of micro polypropylene fibres and nano TiO2
    on the fresh- and hardened-state properties of geopolymer concrete, Constr. Build. Mater., 300 (2021) 124239, doi: 10.1016/j.conbuildmat.2021.124239.
  15. B.Y. Lee, J.J. Thomas, Influence of TiO2 Nanoparticles on Early C3S Hydration, Nanotechnology of Concrete: The Next Big Thing is Small, ACI Convention, New Orleans, LA, USA, 2009, pp. 35–44.
  16. B.Y. Lee, K.E. Kurtis, Proposed acceleratory effect of TiO2 nanoparticles on belite hydration: preliminary results, J. Am. Ceram. Soc., 95 (2012) 365–368.
  17. L. Cassar, Photocatalysis of cementitious materials: clean buildings and clean air, MRS Bull., 29 (2004) 328–331.
  18. M. Maury-Ramirez, K. Demeestere, N. De Belie, Photocatalytic activity of titanium dioxide nanoparticle coatings applied on autoclaved aerated concrete: effect of weathering on coating physical characteristics and gaseous toluene removal, J. Hazard. Mater., 211–212 (2012) 218–225.
  19. A. Kumar, M. Khan, J. He, I.M.C. Lo, Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: a critical review, Water Res., 170 (2020) 115356, doi: 10.1016/j.watres.2019.115356.
  20. L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius, D. Meissner, H. Kisch, Visible-light detoxification and charge generation by transition metal chloride modified titania, Chem. Eur. J., 6 (2000) 379–384.
  21. H. Kisch, L. Zang, C. Lange, W F. Maier, C. Antonius, D. Meissner, Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light, Angew. Chem. Int. Ed., 37 (1998) 3034–3036.
  22. Z. Zhang, P.A. Maggard, Investigation of photocatalyticallyactive hydrated forms of amorphous titania,
    TiO2·nH2O, J. Photochem. Photobiol., A, 186 (2007) 8–13.
  23. N.C. Neyt, D.L. Riley, Application of reactor engineering concepts in continuous flow chemistry: a review, React. Chem. Eng., 6 (2021) 1295–1326.
  24. D. Wang, M.A. Mueses, J.A.C. Márquez, F. Machuca-Martínez, I. Grčić, R.P.M. Moreira, G.L. Puma, Engineering and modeling perspectives on photocatalytic reactors for water treatment, Water Res., 202 (2021) 117421, doi: 10.1016/j.watres.2021 .117421.
  25. M. Pelzer, S.L. Pirard, C.A. Páez, J.C. Monbaliu, B. Heinrichs, Development of a continuous fluidic reactor for the photocatalytic treatment of liquid effluents, J. Nanotechnol. Mater. Sci., 7 (2019) 1–19.
  26. H.-J. Choi, D.-Y. Yoo, G.-J. Park, J.-J. Park, Photocatalytic high-performance fiber-reinforced cement composites with white Portland cement, titanium dioxide, and surface treated polyethylene fibers, J. Mater. Res. Technol., 15 (2021) 785–800.
  27. C.M. Ling, A.R. Mohamed, S. Bhatia, Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere, 57 (2004) 547–554.
  28. M. Abbas, M. Trari, Contribution of photocatalysis for the elimination of Methyl Orange (MO) in aqueous medium using TiO2 catalyst, optimization of the parameters and kinetics modeling, Desal. Water Treat., 214 (2021) 413–419.
  29. Z. Li, X. Chen, M. Wang, X. Zhang, L. Liao, T. Fang, B. Li, Photocatalytic degradation of Congo red by using the Cu2O/α-Fe2O3 composite catalyst, Desal. Water Treat., 215 (2021) 222–231.
  30. N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295 (2006) 159–164.
  31. R.A. Damodar, T. Swaminathan, Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation, Chem. Eng. J., 144 (2008) 59–66.
  32. S. Mozia, M. Tomaszewska, A.W. Morawski, Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed, Dyes Pigm., 75 (2007) 60–66.
  33. A.R. Khataee, A.R. Amani-Ghadim, M. Rastegar Farajzade, O. Valinazhad Ourang, Photocatalytic activity of nanostructured TiO2-modified white cement, J. Exp. Nanosci., 6 (2011) 138−148.
  34. S. Feng, J. Song, F. Li, X. Fu, H. Guo, J. Zhu, Q. Zeng, X. Peng, X. Wang, Y. Ouyang, F. Li, Photocatalytic properties, mechanical strength and durability of TiO2/cement composites prepared by a spraying method for removal of organic pollutants, Chemosphere, 254 (2020) 126813, doi: 10.1016/j.chemosphere.2020.126813.
  35. K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J., 178 (2011) 40–49.
  36. ASTM International, C150, Standard Specification for Portland Cement, 2005.
  37. ASTM International, C1240, Standard Specification for Silica Fume Used in Cementitious Mixtures, 2020.
  38. ASTM International, C494/C494M, Standard Specification for Chemical Admixtures for Concrete, 2019.
  39. ASTM International, C109/C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), 2013.
  40. ASTM International, C348, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, 2021.
  41. ASTM International, C944/C944M, Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method, 2019.
  42. A. Mohagheghian, S.-A. Karimi, J.-K. Yang, M. Shirzad-Siboni, Photocatalytic degradation of a textile dye by illuminated tungsten oxide nanopowder, J. Adv. Oxid. Technol., 18 (2015) 61–68.
  43. L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange, Chemosphere, 222 (2019) 391–398.
  44. S. Feng, F. Liu, X. Fu, X. Peng, J. Zhu, Q. Zeng, J. Song, Photocatalytic performances and durability
    of TiO2/cement composites prepared by a smear method for organic wastewater degradation, Ceram. Int., 45 (2019) 23061–23069.
  45. H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park, A.C.K. Yip, Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges, Nano Res., 12 (2019) 955–972.
  46. D.S. de Sá, L.E. Vasconcellos, J.R. de Souza, B.A. Marinkovic, T. Del Rosso, D. Fulvio, D. Maza, A. Massi, O. Pandoli, Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of mesoand microfluidic TiO2 reactors for wastewater treatment, J. Photochem. Photobiol., A, 364 (2018) 59–75.
  47. L. Lei, N. Wang, X.M. Zhang, Q. Tai, D.P. Tsai, H.L.W. Chan, Optofluidic planar reactors for photocatalytic water treatment using solar energy, Biomicrofluidics, 4 (2010) 043004, doi: 10.1063/1.3491471.
  48. N. Wang, L. Lei, X.M. Zhang, Y.H. Tsang, Y. Chen, H.L.W. Chan, A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis, Microelectron. Eng., 88 (2011) 2797–2799.