1. M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, S. Sharil, S.S. Abu Amr, Evaluation quality of desalinated water derived from inclined copper-stepped solar still, Desal. Water Treat., 131 (2018) 83–95.
  2. A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, M.A. Mattar, Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment, Sol. Energy, 118 (2015) 41–58.
  3. B. Leveque, J.B. Burnet, S. Dorner, F. Bichai, Impact of climate change on the vulnerability of drinking water intakes in a northern region, Sustainable Cities Soc., 66 (2021) 102656, doi: 10.1016/j.scs.2020.102656.
  4. S.S. Ray, R.K. Verma, A. Singh, S. Myung, Y.-I. Park, I.-C. Kim, H.K. Lee, Y.-N. Kwon, Exploration of time series model for predictive evaluation of long-term performance of membrane distillation desalination, Process Saf. Environ. Prot., 160 (2022) 1–12, doi: 10.1016/j.psep.2022.01.058.
  5. S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa, A.H. Elsheikh, S.I.T. Mohamed, A.E. Kabeel, Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study, Appl. Therm. Eng., 113 (2017) 684–693.
  6. K. Rhoden, J. Alonso, M. Carmona, M. Pham, A.N. Barnes, Twenty years of waterborne and related disease reports in Florida, USA, One Health, 13 (2021) 100294, doi: 10.1016/j.onehlt.2021.100294.
  7. S. Nazari, M. Bahiraei, H. Moayedi, H. Safarzadeh, A proper model to predict energy efficiency, exergy efficiency, and water productivity of a solar still via optimized neural network, J. Cleaner Prod., 277 (2020) 123232, doi: 10.1016/j.jclepro.2020.123232.
  8. S. Khanmohammadi, S. Khanjani, Experimental study to improve the performance of solar still desalination by hydrophobic condensation surface using cold plasma technology, Sustainable Energy Technol. Assess., 45 (2021) 101129, doi: 10.1016/j.seta.2021.101129.
  9. A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  10. S.K. Suraparaju, R. Dhanusuraman, S.K. Natarajan, Performance evaluation of single slope solar still with novel pond fibres, Process Saf. Environ. Prot., 154 (2021) 142–154.
  11. O. Bait, Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still, J. Cleaner Prod., 212 (2019) 630–646.
  12. A.E. Kabeel, R. Sathyamurthy, A.M. Manokar, S.W. Sharshir, F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar still using graphene oxide nano particles in phase change material (NPCM’s) for fresh water production, J. Energy Storage, 28 (2020) 101204, doi: 10.1016/j.est.2020.101204.
  13. M. Mukherjee, S. Roy, K. Bhowmick, S. Majumdar, I. Prihatiningtyas, B. Van der Bruggen, P. Mondal, Development of high performance pervaporation desalination membranes: a brief review, Process Saf. Environ. Prot., 159 (2022) 1092–1104.
  14. WWAP, The United Nations World Water Development Report 2015: Water For a Sustainable World, Paris, 2016. Available at: water/wwap/wwdr/2015-water-for-a-sustainable-world/
  15. L. Mu, L. Chen, L. Lin, Y.H. Park, H. Wang, P. Xu, K. Kota, S. Kuravi, An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective, Renewable Sustainable Energy Rev., 150 (2021) 111458, doi: 10.1016/j.rser.2021.111458.
  16. A.E. Kabeel, S.A. El-Agouz, R. Sathyamurthy, T. Arunkumar, Augmenting the productivity of solar still using jute cloth knitted with sand heat energy storage, Desalination, 443 (2018) 122–129.
  17. N. Najid, S. Fellaou, S. Kouzbour, B. Gourich, A. Ruiz-García, Energy and environmental issues of seawater reverse osmosis desalination considering boron rejection: a comprehensive review and a case study of exergy analysis, Process Saf. Environ. Prot., 156 (2021) 373–390.
  18. R. Lokk, S.M. Alsadaie, I.M. Mujtaba, Dynamic simulation of once-through multistage flash (MSF-OT) desalination process: effect of seawater temperature on the fouling mechanism in the heat exchangers, Comput. Chem. Eng., 155 (2021) 107515, doi: 10.1016/j.compchemeng.2021.107515.
  19. H. Lv, Y. Wang, L. Wu, Y. Hu, Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination, Desalination, 465 (2019) 69–78.
  20. A. Darmawan, L. Karlina, I. Khairunnisak, R.E. Saputra, C. Azmiyawati, Y. Astuti, A.P. Noorita, Hydrophobic silica thin film derived from dimethyldimethoxysilanetetraethylorthosilicate for desalination, Thin Solid Films, 734 (2021) 138865, doi: 10.1016/j.tsf.2021.138865.
  21. H. You, X. Zhang, D. Zhu, C. Yang, P. Chammingkwan, T. Taniike, Advantages of polydopamine coating in the design of ZIF-8-filled thin-film nanocomposite (TFN) membranes for desalination, Colloids Surf., A, 629 (2021) 127492, doi: 10.1016/j.colsurfa.2021.127492.
  22. B.S. Al-Anzi, A. Al-Rashidi, L. Abraham, J. Fernandes, A. Al-Sheikh, A. Alhazza, Brine management from desalination plants for salt production utilizing high current density electrodialysis-evaporator hybrid system: a case study in Kuwait, Desalination, 498 (2021) 114760, doi: 10.1016/j.desal.2020.114760.
  23. G. Zheng, J. Jiang, X. Wang, W. Li, J. Liu, G. Fu, L. Lin, Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications, Mater. Des., 189 (2020) 108504, doi: 10.1016/j.matdes.2020.108504.
  24. X. Huang, T. Ke, Y. Li, X. Ling, Experimental investigation and optimization of total energy consumption in humidificationdehumidification system, Energy Procedia, 158 (2019) 3488–3493.
  25. M.M. Farid, S. Parekh, J.R. Selman, S. Al-Hallaj, Solar desalination with a humidification-dehumidification cycle: mathematical modeling of the unit, Desalination, 151 (2003) 153–164.
  26. S.M. Parsa, A. Rahbar, M.H. Koleini, S. Aberoumand, M. Afrand, M. Amidpour, A renewable energy-driven thermoelectricutilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination, Desalination, 480 (2020) 114354, doi: 10.1016/j.desal.2020.114354.
  27. S. Sethi, S. Walker, J. Drewes, P. Xu, Existing and emerging concentrate minimization and disposal practices for membrane systems, Florida Water Resour. J., 38 (2006) 40–45.
  28. M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate, Desalination, 423 (2017) 141–148.
  29. A. Cipollina, E. Tzen, V. Subiela, M. Papapetrou, J. Koschikowski, R. Schwantes, Renewable energy desalination: performance analysis and operating data of existing RES desalination plants, Desal. Water Treat., 55 (2015) 3126–3146.
  30. A. El-Bahi, D. Inan, Analysis of a parallel double glass solar still with separate condenser, Renewable Energy, 17 (1999) 509–521.
  31. G.M. Ayoub, L. Malaeb, Economic feasibility of a solar still desalination system with enhanced productivity, Desalination, 335 (2014) 27–32.
  32. M.S.S. Abujazar, S. Fatihah, E.R. Lotfy, A.E. Kabeel, S. Sharil, Performance evaluation of inclined copper-stepped solar still in a wet tropical climate, Desalination, 425 (2018) 94–103.
  33. H. Sharon, Energy, exergy, environmental benefits and economic aspects of novel hybrid solar still for sustainable water distillation, Process Saf. Environ. Prot., 150 (2021) 1–21, doi: 10.1016/j.psep.2021.04.003.
  34. F.A. Essa, A.S. Abdullah, Z.M. Omara, Improving the performance of tubular solar still using rotating drum – experimental and theoretical investigation, Process Saf. Environ. Prot., 148 (2021) 579–589.
  35. A.A. AL-Karaghouli, W.E. Alnaser, Experimental comparative study of the performances of single and double basin solarstills, Appl. Energy, 77 (2004) 317–325.
  36. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions, Energy Convers. Manage., 41 (2000) 883–890.
  37. F.F. Tabrizi, A.Z. Sharak, Experimental study of an integrated basin solar still with a sandy heat reservoir, Desalination, 253 (2010) 195–199.
  38. O.O. Badran, Experimental study of the enhancement parameters on a single slope solar still productivity, Desalination, 209 (2007) 136–143.
  39. A.E. Kabeel, M. Abdelgaied, A. Eisa, Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials, J. Cleaner Prod., 183 (2018) 20–25.
  40. F. Ketabchi, S. Gorjian, S. Sabzehparvar, Z. Shadram, M.S. Ghoreishi, H. Rahimzadeh, Experimental performance evaluation of a modified solar still integrated with a cooling system and external flat-plate reflectors, Sol. Energy, 187 (2019) 137–146.
  41. V. Velmurugan, S. Pandiarajan, P. Guruparan, L.H. Subramanian, C.D. Prabaharan, K. Srithar, Integrated performance of stepped and single basin solar stills with mini solar pond, Desalination, 249 (2009) 902–909.
  42. D. Kumar, P. Kumar, Mathematical modeling of conventional solar still coupled with solar air heater, IJISET – Int. J. Innovative Sci. Eng. Technol., 1 (2014) 379–385.
  43. A.F. Mashaly, A.A. Alazba, ANFIS modeling and sensitivity analysis for estimating solar still productivity using measured operational and meteorological parameters, Water Sci. Technol. Water Supply, 18 (2018) 1437–1448.
  44. S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, Improving the thermoelectric solar still performance by using nanofluids– experimental study, thermodynamic modeling and energy matrices analysis, Sustainable Energy Technol. Assess., 47 (2021) 101339, doi: 10.1016/j.seta.2021.101339.
  45. M. Keshtkar, M. Eslami, K. Jafarpur, Effect of design parameters on performance of passive basin solar stills considering instantaneous ambient conditions: a transient CFD modeling, Sol. Energy, 201 (2020) 884–907.
  46. M. Feng, Y. Tao, A Mathematical Model for the Performance of a Horizontal Convective Solar Still, ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, 2015, pp. 1–9.
  47. Y.A.F. El-Samadony, A.E. Kabeel, Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still, Energy, 68 (2014) 744–750.
  48. M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural networks for refrigeration,
    air-conditioning and heat pump systems – a review, Renewable Sustainable Energy Rev., 16 (2012) 1340–1358.
  49. A.H. Elsheikh, V.P. Katekar, O.L. Muskens, S.S. Deshmukh, M.A. Elaziz, S.M. Dabour, Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate, Process Saf. Environ. Prot., 148 (2021) 273–282.
  50. G. Sadeghi, A.L. Pisello, S. Nazari, M. Jowzi, F. Shama, Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors, J. Cleaner Prod., 295 (2021) 126409, doi: 10.1016/j.jclepro.2021.126409.
  51. P. Das, A. Debnath, Reactive orange 12 dye adsorption onto magnetically separable CaFe2O4 nanoparticles synthesized by simple chemical route: kinetic, isotherm and neural network modeling, Water Pract. Technol., 16 (2021, doi: 10.2166/wpt.2021.064.
  52. G. Sadeghi, S. Nazari, M. Ameri, F. Shama, Energy and exergy evaluation of the evacuated tube solar collector using Cu2O/water nanofluid utilizing ANN methods, Sustainable Energy Technol. Assess., 37 (2020) 100578, doi: 10.1016/j.seta.2019.100578.
  53. G. Sadeghi, M. Najafzadeh, M. Ameri, M. Jowzi, A case study on copper-oxide nanofluid in a back pipe vacuum tube solar collector accompanied by data mining techniques, Case Stud. Therm. Eng., 32 (2022) 101842, doi:10.1016/j.csite.2022.101842.
  54. G. Sadeghi, M. Najafzadeh, M. Ameri, Thermal characteristics of evacuated tube solar collectors with coil inside: an experimental study and evolutionary algorithms, Renewable Energy, 151 (2020), doi:10.1016/j.renene.2019.11.050.
  55. A. Debnath, M. Majumder, M. Pal, N.S. Das, K.K. Chattopadhyay, B. Saha, Enhanced Adsorption of hexavalent chromium onto magnetic calcium ferrite nanoparticles: kinetic, isotherm, and neural network modeling, J. Dispersion Sci. Technol., 37 (2016) 1141100, doi: 10.1080/01932691.2016.1141100.
  56. G. Sadeghi, M. Najafzadeh, H. Safarzadeh, Utilizing gene-expression programming in modelling the thermal performance of evacuated tube solar collectors, J. Energy Storage, 30 (2020) 101546, doi:10.1016/j.est.2020.101546.
  57. M. Bhowmik, K. Deb, A. Debnath, B. Saha, Mixed phase Fe2O3/ Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: neural network modeling and response surface methodology optimization, Appl. Organomet. Chem., 32 (2018), doi: 10.1002/aoc.4186.
  58. R. Eke, H. Demircan, Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey, Energy Convers. Manage., 65 (2013) 580–586.
  59. R. Ata, Artificial neural networks applications in wind energy systems: a review, Renewable Sustainable Energy Rev., 49 (2015) 534–562.
  60. N.I. Santos, A.M. Said, D.E. James, N.H. Venkatesh, Modeling solar still production using local weather data and artificial neural networks, Renewable Energy, 40 (2012) 71–79.
  61. M.A. Hamdan, R.A. Haj Khalil, E.A.M. Abdelhafez, Comparison of neural network models in the estimation of the performance of solar still under Jordanian climate, J. Clean Energy Technol., 1 (2014) 238–242.
  62. R. Barzegar, A. Asghari Moghaddam, J. Adamowski, B. Ozga- Zielinski, Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model, Stochastic Environ. Res. Risk Assess., 32 (2018) 799–813.
  63. A. Mosavi, F.S. Hosseini, B. Choubin, Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction Content courtesy of Springer Nature, Terms of Use Apply, Rights Reserved, Content Courtesy of Springer Nature, Terms of Use Apply, Rights Reserved, 2021, pp. 23–37.
  64. D.H. Nguyen, X. Hien Le, J.Y. Heo, D.H. Bae, Development of an extreme gradient boosting model integrated with evolutionary algorithms for hourly water level prediction, IEEE Access, 9 (2021) 125853–125867.
  65. M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil, Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model, J. Cleaner Prod., 170 (2017) 147–159.
  66. T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Solar energy prediction for Malaysia using artificial neural networks, Int. J. Photoenergy, 2012 (2012) 419504, doi: 10.1155/2012/419504.
  67. B.I. Ismail, Design and performance of a transportable hemispherical solar still, Renewable Energy, 34 (2009) 145–150.
  68. A. Hanson, W. Zachritz, K. Stevens, L. Mimbela, R. Polka, L. Cisneros, Distillate water quality of a single-basin solar still: laboratory and field studies, Sol. Energy, 76 (2004) 635–645.
  69. AccuWeather, Malaysia Weather, 2016. Available at: (Accessed December 23, 2016).
  70. V. Velmurugan, K.J. Naveen Kumar, T. Noorul Haq, K. Srithar, Performance analysis in stepped solar still for effluent desalination, Energy, 34 (2009) 1179–1186.
  71. R.S. Hansen, C.S. Narayanan, K.K. Murugavel, Performance analysis on inclined solar still with different new wick materials and wire mesh, Desalination, 358 (2015) 1–8.
  72. D. Opitz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif. Intell. Res., 11 (1999) 169–198.
  73. Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting BT – computational learning theory, Comput. Learn Theory, 904 (2005) 23–37.
  74. S. Jhaveri, I. Khedkar, Y. Kantharia, S. Jaswal, Success Prediction Using Random Forest, CatBoost, XGBoost and AdaBoost for Kickstarter Campaigns, 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Erode, India, 2019, pp. 1170–1173. Available at doi:10.1109/ICCMC.2019.8819828.
  75. F. Anggraeni, D. Adytia, A.W. Ramadhan, Forecasting of Wave Height Time Series Using AdaBoost and XGBoost, Case Study in Pangandaran, Indonesia, 2021 International Conference on Data Science and Its Applications (ICoDSA), IEEE, Bandung, Indonesia, 2021, pp. 97–101. Available at doi:10.1109/ICoDSA53588.2021.9617524.
  76. R. Punmiya, S. Choe, Energy theft detection using gradient boosting theft detector with feature
    engineering-based preprocessing, IEEE Trans. Smart Grid, 10 (2019) 2326–2329.
  77. S. Lee, T.P. Vo, H.T. Thai, J. Lee, V. Patel, Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm, Eng. Struct., 238 (2021) 112109, doi:10.1016/j.engstruct.2021.112109.
  78. H. Lu, S.P. Karimireddy, N. Ponomareva, V. Mirrokni, Accelerating Gradient Boosting Machine, Int. Conf. Arti Cial Intell. Stat. (AISTATS), 2020, pp. 1–10. Available at: http://arxiv. org/abs/1903.08708.
  79. E.K. Sahin, Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping, Geocarto Int., 37 (2022) 2441–2465.
  80. R. Costache, Q.B. Pham, M. Avand, N.T. Thuy Linh, M. Vojtek, J. Vojteková, S. Lee, D.N. Khoi, P.T. Thao Nhi, T.D. Dung, Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment, J. Environ. Manage., 265 (2020) 110485, doi:10.1016/j.jenvman.2020.110485.
  81. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Front. Neurorobot., 7 (2013) 1–21.
  82. A. Ibrahem Ahmed Osman, A. Najah Ahmed, M.F. Chow, Y. Feng Huang, A. El-Shafie, extreme gradient boosting (XGBoost) model to predict the groundwater levels in Selangor Malaysia, Ain Shams Eng. J., 12 (2021) 1545–1556.
  83. J. Cao, Z. Zhang, J. Du, L. Zhang, Y. Song, G. Sun, Multigeohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China, Nat. Hazards, 102 (2020) 851–871.
  84. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu, LightGBM: a highly efficient gradient boosting decision tree, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017, pp. 3147–3155.
  85. E.K. Sahin, Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest, SN Appl. Sci., 2 (2020) 1–17.
  86. E. Al Daoud, Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset, World Acad. Sci. Eng. Technol., Int. J. Comput. Inf. Eng., 13 (2019) 6–10.
  87. M. Tang, Q. Zhao, S.X. Ding, H. Wu, L. Li, W. Long, B. Huang, An improved LightGBM algorithm for online fault detection of wind turbine gearboxes, Energies, 13 (2020) 13040807, doi: 10.3390/en13040807.
  88. A. Haithm, A.Y. Saleh, A. Odabaş, Comparison of gradient boosting decision tree algorithms for CPU performance, J. Inst. Sci. Technol., 37 (2021) 157–168.
  89. Y. Wang, T. Wang, Application of improved LightGBM model in blood glucose prediction, Appl. Sci., 10 (2020), doi: 10.3390/app10093227.