References

  1. Y. Du, T.Y. Gao, G.T. Rochelle, A.S. Bhown, Zero- and negative emissions fossil-fired power plants using CO2 capture by conventional aqueous amines, Int. J. Greenhouse Gas Control, 111 (2021) 103473, doi: 10.1016/j.ijggc.2021.103473.
  2. F. Urban, S. Geall, Y. Wang, Solar PV and solar water heaters in China: different pathways to low carbon energy, Renewable Sustainable Energy Rev., 64 (2016) 531–542.
  3. A. Kumar, A. Raj, S. Kumar, J.P. Kesari, Development of solar powered air conditioner using flat plate collector, Mater. Today:. Proc., 47 (2021) 2883–2888.
  4. A. Chorak, P. Palenzuela, D.-C. Alarcón-Padilla, A. Ben Abdellah, Experimental characterization of a multi-effect distillation system coupled to a flat plate solar collector field: empirical correlations, Appl. Therm. Eng., 120 (2017) 298–313.
  5. R. Shukla, K. Sumathy, P. Erickson, J. Gong, Recent advances in the solar water heating systems: a review, Renewable Sustainable Energy Rev., 19 (2013) 173–190.
  6. S. Rehman, A.Z. Sahin, F.A. Al-Sulaiman, Economic assessment of industrial solar water heating system, FME Trans., 50 (2022) 16–23.
  7. B.M. Diaconu, S. Varga, A.C. Oliveira, Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications, Appl. Energy 87 (2010). 620–628.
  8. G. Li, Y. Hwang, R. Radermacher, Review of cold storage materials for air conditioning application, Int. J. Refrig., 35 (2012) 2053–2077.
  9. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization, Renewable Sustainable Energy Rev., 14 (2010) 31–55.
  10. L.C. Ding, N. Meyerheinrich, L. Tan, K. Rahaoui, R. Jain, A. Akbarzadeh, Thermoelectric power generation from waste heat of natural gas water heater, Energy Procedia, 110 (2017) 32–37.
  11. S. Ettami, D. Saifaoui, M. Oulhazzan, A. Gounni, Design and development of a parabolic solar concentrator, Mater. Today:. Proc., 30 (2020) 1021–1026.
  12. Y. El Mghouchi, T. Ajzoul, A. El Bouardi, Prediction of daily solar radiation intensity by day of the year in twenty-four cities of Morocco, Renewable Sustainable Energy Rev., 53 (2016) 823–831.
  13. G. He, Y. Zheng, Y. Wu, Z. Cui, K. Qian, Promotion of buildingintegrated solar water heaters in urbanized areas in China: experience, potential, and recommendations, Renewable Sustainable Energy Rev., 42 (2015) 643–656.
  14. S. ed-Dîn Fertahi, T. Bouhal, F. Gargab, A. Jamil, T. Kousksou, A. Benbassou, Design and thermal performance optimization of a forced collective solar hot water production system in Morocco for energy saving in residential buildings, Sol. Energy, 160 (2018) 260–274.
  15. Q. Ma, A. Ahmadi, C. Cabassud, Direct integration of a vacuum membrane distillation module within a solar collector for small-scale units adapted to seawater desalination in remote places: design, modeling and evaluation of a flat-plate equipment, J. Membr. Sci., 564 (2018) 617–633.
  16. S. Alqaed, Effect of using a solar hot air collector installed on the inclined roof of a building for cooling and heating system in the presence of polymeric PCM, Sustainable Energy Technol. Assess., 50 (2022) 101852, doi: 10.1016/j.seta.2021.101852.
  17. S.S. Nunayon, W.P. Akanmu, Potential application of a thermosyphon solar water heating system for hot water production in beauty salons: a thermo-economic analysis, Case Stud. Therm. Eng., 32 (2022) 101881, doi: 10.1016/j.csite.2022.101881.
  18. A. Shafieian, M. Khiadani, Integration of heat pipe solar water heating systems with different residential households: an energy, environmental, and economic evaluation, Case Stud. Therm. Eng., 21 (2020) 100662, doi: 10.1016/j.csite.2020.100662.
  19. S.A. Hakem, N. Kasbadji–Merzouk, M. Merzouk, Performances journalières d’un chauffe eau solaire, Rev. Energ. Renew. CICME, 8 (2008) 153–162.
  20. S.S. Nunayon, W.P. Akanmu, Potential application of a thermosyphon solar water heating system for hot water production in beauty salons: a thermo-economic analysis, Case Stud. Therm. Eng., 32 (2022) 101881, doi: 10.1016/j.csite.2022.101881.
  21. D. Zhang, H. Tao, M. Wang, Z. Sun, C. Jiang, Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector, Appl. Therm. Eng., 118 (2017) 113–126.
  22. M. Hu, C. Guo, B. Zhao, X. Ao, Suhendri, J. Cao, Q. Wang, S. Riffat, Y. Su, G. Pei, A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector, Renewable Energy, 167 (2021) 884–898.
  23. J. Sarwar, M.R. Khan, M. Rehan, M. Asim, A.H. Kazim, Performance analysis of a flat plate collector to achieve a fixed outlet temperature under semi-arid climatic conditions, Sol. Energy, 207 (2020) 503–516.
  24. J. Shi, K. Lin, Z. Chen, H. Shi, Annual dynamic thermal performance of solar water heaters: a case study in China’s Jiangsu Province, Energy Build., 173 (2018) 399–408.
  25. T. Baki, M. Tebbal, H. Berrebah, F. Bougara, Etude des performances d’un chauffe-eau solaire individuel installé à Oran, 1ère Conférences Sur Energ. Renouvelables Matér. Avancés ERMA’19, 2019.
  26. R. Daghigh, P. Zandi, An air and water heating system based on solar gas combined with nanofluids and phase change materials, J. Cleaner Prod., 311 (2021) 127751, doi: 10.1016/j.jclepro.2021.127751.
  27. S. Mohan, P. Dinesha, A.S. Iyengar, Modeling and analysis of a solar minichannel flat plate collector system and optimization of operating conditions using particle swarms, Therm. Sci. Eng. Prog., 22 (2021) 100855, doi: 10.1016/j.tsep.2021.100855.
  28. Z. Jiandong, T. Hanzhong, C. Susu, Numerical simulation for structural parameters of flat-plate solar collector, Sol. Energy, 117 (2015) 192–202.
  29. Y. Taheri, B.M. Ziapour, K. Alimardani, Study of an efficient compact solar water heater, Energy Convers. Manage., 70 (2013) 187–193.
  30. J.K. Kaldellis, K. El-Samani, P. Koronakis, Feasibility analysis of domestic solar water heating systems in Greece, Renewable Energy, 30 (2005) 659–682.
  31. B. Ghorbani, M. Mehrpooya, M. Sadeghzadeh, Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle, Energy Convers. Manage., 165 (2018) 113–126.