1. H.P. Garg, H.S. Mann, Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions, Sol. Energy, 18 (1976) 159–163.
  2. M. Farid, F. Hamad, Performance of a single-basin solar still, Renewable Energy, 3 (1993) 75–83.
  3. A.A. El-Sebaii, Effect of wind speed on some designs of solar stills, Energy Convers. Manage., 41 (2000) 523–538.
  4. A.A. El-Sebaii, Effect of wind speed on active and passive solar stills, Energy Convers. Manage., 45 (2004) 1187–1204.
  5. N. Smakdji, A. Kaabi, B. Lips, Optimization and modeling of a solar still with heat storage, Desal. Water Treat., 52 (2014) 1761–1769.
  6. S. Toure, P. Meukam, A numerical model and experimental investigation for a solar still in climatic conditions in Abidjan (Côte d’Ivoire), Renewable Energy, 11 (1997) 319–330.
  7. W. Parekh, M. Patel, N. Patel, J. Prajapati, M. Patel, Optimization of water output by experimental analysis on passive solar still, IOP Conf. Ser.: Mater. Sci. Eng., 310 (2018) 012058.
  8. A. Johnson, L. Mu, Y.H. Park, D.J. Valles, H. Wang, P. Xu, K. Kota, S. Kuravi, A thermal model for predicting the performance of a solar still with fresnel lens, Water (Switzerland), 11 (2019) 1860, doi: 10.3390/w11091860.
  9. M.O.A. Abbas, M.Y. Al-Abed Allah, Q.N. Al-Oweiti, Optimization analysis of active solar still using design of experiment method, Drinking Water Eng. Sci. Discuss., (2020), doi: 10.5194/dwes-2020-22.
  10. O. Rejeb, M.S. Yousef, C. Ghenai, H. Hassan, M. Bettayeb, Investigation of a solar still behaviour using response surface methodology, Case Stud. Therm. Eng., 24 (2021) 100816, doi: 10.1016/j.csite.2020.100816.
  11. G.N. Tiwari, Madhuri, Effect of water depth on daily yield of the still, Desalination, 61 (1987) 67–75.
  12. A.K. Singh, G.N. Tiwari, P.B. Sharma, E. Khan, Optimization of orientation for higher yield of solar still for a given location, Energy Convers. Manage., 36 (1995) 175–181.
  13. A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination, 195 (2006) 78–94.
  14. M.K. Phadatare, S.K. Verma, Influence of water depth on internal heat and mass transfer in a plastic solar still, Desalination, 217 (2007) 267–275.
  15. A.K. Tiwari, G.N. Tiwari, Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: the effect of water depths, Desalination, 207 (2007) 184–204.
  16. A.Z. Al-Garni, A.H. Kassem, F. Saeed, F. Ahmed, Effect of glass slope angle and water depth on productivity of double slope solar still, J. Sci. Ind. Res. (India), 70 (2011) 884–890.
  17. V.K.V. Ajeet Kumar Rai, A. Kumar, Effect of water depth and still orientation on productivity of passive solar still, Int. J. Mech. Eng. Technol., 5 (2014) 36–43.
  18. G.N. Tiwari, J.M. Thomas, E. Khan, Optimisation of glass cover inclination for maximum yield in a solar still, Heat Recovery Syst. CHP, 14 (1994) 447–455.
  19. B.B. Sahoo, C. Subudhi, Performance enhancement of solar still by using reflectors-jute cloth-improved glass angle, J. Eng. Res., 16 (2019) 1–10.
  20. S. Aboul-Enein, A.A. El-Sebaii, E. El-Bialy, Investigation of a single-basin solar still with deep basins, Renewable Energy, 14 (1998) 299–305.
  21. M.A. Elkader, An Investigation of the parameters involved in simple solar still with inclined yute, Renewable Energy, 14 (1998) 333–338.
  22. S. Kumar, G.N. Tiwari, H.N. Singh, Annual performance of an active solar distillation system, Desalination, 127 (2000) 79–88.
  23. M. Ali Samee, U.K. Mirza, T. Majeed, N. Ahmad, Design and performance of a simple single basin solar still, Renewable Sustainable Energy Rev., 11 (2007) 543–549.
  24. A.Y. Hashim, W.A.T. Alramdhan, An attempt to solar still productivity optimization; solar still shape, glass cover inclination and inner surface area of a single basin solar still, optimization, Basrah J. Sci., 28 (2010) 39–48.
  25. A.J.N. Khalifa, On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes, Energy Convers. Manage., 52 (2011) 431–436.
  26. F. Edeoja, A. Okibe, Unom, Investigation of the effect of angle of cover inclination on the yield of a single basin solar still under Makurdi climate, Energy Procedia, 14 (2013) 131–138.
  27. V. Verma, Optimization of parameters affecting the performance of passive solar distillation system by using Taguchi method, IOSR J. Mech. Civ. Eng., 7 (2013) 37–42.
  28. W.M. El-maghlany, An approach to optimization of double slope solar still geometry for maximum collected solar energy, Alexandria Eng. J., 54 (2015) 823–828.
  29. H.A. Begum, M.A. Yousuf, K. Siddique-e Rabbani, Effect of top cover material on productivity of solar distillation unit, Bangladesh J. Med. Phys., 9 (2018) 11–16.
  30. H.R. Goshayeshi, M.R. Safaei, Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still, Int. J. Numer. Methods Heat Fluid Flow, 30 (2020) 3183–3198.
  31. F. Banat, R. Jumah, M. Garaibeh, Exploitation of solar energy collected by solar stills for desalination by membrane distillation, Renewable Energy, 25 (2002) 293–305.
  32. B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study of the basin type solar still under local climate conditions, Energy Convers. Manage., 41 (2000) 883–890.
  33. M.Z. Malik, F. Musharavati, S. Khanmohammadi, S. Khanmohammadi, D.D. Nguyen, Solar still desalination system equipped with paraffin as phase change material: exergoeconomic analysis and multi-objective optimization, Environ. Sci. Pollut. Res., 28 (2021) 220–234.
  34. M. Khan, M. Mustafa, Solar still distillate productivity enhancement by using reflector and design optimization, Innov. Energy Res., 8 (2019) 1–10.
  35. A.E. Kabeel, Z.M. Omara, F.A. Essa, Improving the performance of solar still by using nanofluids and providing vacuum, Energy Convers. Manage., 86 (2014) 268–274.
  36. D. Dsilva Winfred Rufuss, S. Iniyan, L. Suganthi, P.A. Davies, T. Akinaga, Analysis of Solar Still with nanoparticle Incorporated Phase Change Material for Solar Desalination Application, Solar World Congress 2015/ISES Conference Proceedings, Daegu, Korea, 8–12 November 2015, 2015, pp. 1271–1280.
  37. B. Gupta, P. Shankar, R. Sharma, P. Baredar, Performance enhancement using nano particles in modified passive solar still, Procedia Technol., 25 (2016) 1209–1216.
  38. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, T. Arunkumar, Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles, Alexandria Eng. J., 56 (2017) 433–438.
  39. O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S. Wongwises, Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy, 36 (2017) 134–155.
  40. S. Rashidi, M. Bovand, N. Rahbar, J. Abolfazli, Steps optimization and productivity enhancement in a nano fl uid cascade solar still, Renewable Energy, 118 (2018) 536–545.
  41. M.R. Safaei, H.R. Goshayeshi, I. Chaer, Solar still efficiency enhancement by using graphene oxide/paraffin
    nano-PCM, Energies, 12 (2019) 2002, doi: 10.3390/en12102002.
  42. G.B. Balachandran, P.W. David, R.K. Mariappan, A.E. Kabeel, M.M. Athikesavan, R. Sathyamurthy, Improvising the efficiency of single-sloped solar still using thermally conductive nanoferric oxide, Environ. Sci. Pollut. Res., 27 (2020) 32191–32204.
  43. K.M. Bataineh, M. Abu Abbas, Improving the performance of solar still by using nanofluids, vacuuming, and optimal basin water thickness, Desal. Water Treat., 173 (2020) 105–116.
  44. M. Tarawneh, P.V.R. Sethupathi, P. Senthil, Parametric optimization for improving the performance of single slope solar still through experimental studies, Int. J. Eng. Sci. Res. Technol., 5 (2016) 291–299.
  45. S. Verma, D. Singh, A.K. Sharma, Experimental investigations on a single slope solar still, Int. Res. J. Eng. Technol., 5 (2018) 2658–2662.
  46. R. Balaji, V. Aravindh, J. Baburangan, S. Koushik, P. Mahendran, Performance analysis of single slope solar still using sensible heat storage material, Appl. Innov. Res., 1 (2019) 120–127.
  47. A.A. Fatani, G.M. Zaki, A. Al-Turki, Improving the yield of simple basin solar stills as assisted by passively cooled condensers, Renewable Energy, 4 (1994) 377–386.
  48. M. Jobrane, A. Kharroubi, A. Kahn, A. Kopmeier, C. Penny, Theoretical investigation of a novel solar still configuration for enhanced high-quality drinking water production, WIT Trans. Ecol. Environ., 239 (2019) 181–192.
  49. Z.A.K. Baharin, M.F. Asmi, N.R.N. Masdek, Effect of cone shape condenser plate tilt angle on solar still productivity, IOP Conf. Ser.: Earth Environ. Sci., 2nd International Conference on Green Environmental Engineering and Technology 23–24 July 2020, Seoul, South Korea, 616 (2020) 012038.
  50. M.O. Abu Abbas, M.Y. Al-Abed Allah, Q.N. Al-Oweiti, Optimization analysis of active solar still using design of experiment method, Drinking Water Eng. Sci. Discuss., (2020) 1–24, doi: 10.5194/dwes-2020-22.
  51. A. Ghoneyem, Software to analyze solar stills and an experimental study on the effects of the cover, Desalination, 114 (1997) 37–44.
  52. M. Boukar, A. Harmim, Effect of climatic conditions on the performance of a simple basin solar still: a comparative study, Desalination, 137 (2001) 15–22.
  53. D. Kumar, A. Layek, A. Kumar, Performance enhancement of single slope solar still integrated with flat plate collector for different basin water depth, AIP Conf. Proc., 2273 (2020) 050007, doi: 10.1063/5.0024247.
  54. B.A.K. Abu-Hijleh, H.M. Rababa’h, Experimental study of a solar still with sponge cubes in basin, Energy Convers. Manage., 44 (2003) 1411–1418.
  55. P. Meukam, D. Njomo, A. Gbane, S. Toure, Experimental optimization of a solar still: application to alcohol distillation, Chem. Eng. Process. Process Intensif., 43 (2004) 1569–1577.
  56. H.Ş. Aybar, Mathematical modeling of an inclined solar water distillation system, Desalination, 190 (2006) 63–70.
  57. P.K. Abdenacer, S. Nafila, Impact of temperature difference (water-solar collector) on solar-still global efficiency, Desalination, 209 (2007) 298–305.
  58. F. Ullah, M. Kang, Performance evaluation of parabolic trough solar collector with solar tracking tilt sensor for water distillation, Energy Environ., 30 (2019) 1219–1235.
  59. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 43 (2002) 1639–1650.
  60. M.Z. Khan, J.M. Islamia, J. Nagar, Optimization of single slope solar still geometry for maximum collected solar radiation, Adv. Phys. Theor. Appl., 57 (2016) 45–50.
  61. T. Mohammadi, M.A. Safavi, Application of Taguchi method in optimization of desalination by vacuum membrane distillation, Desalination, 249 (2009) 83–89.
  62. S.J.P. Gnanaraj, S. Ramachandran, Optimization on performance of single-slope solar still linked solar pond via Taguchi method, Desal. Water Treat., 80 (2017) 27–40.
  63. K. Zarzoum, K. Zhani, H.B. Bacha, Experimental validation of optimized solar still using solar energy, J. Fundam. Renewable Energy Appl., 7 (2017).
  64. A.M. Ahmed, A.H. Ahmed, R.W. Daoud, O.K. Ahmed, Optimization of Simple Solar Still Performance Using Fuzzy Logic Control, 2020 6th International Engineering Conference “Sustainable Technology and Development” (IEC), 2020, pp. 205–210.
  65. A. Bagheri, N. Esfandiari, B. Honarvar, A. Azdarpour, ANN modeling and experimental study of the effect of various factors on solar desalination, J. Water Supply Res. Technol. AQUA, 70 (2021) 41–57.
  66. S. Jafari, M. Aghel, A. Sohani, S. Hoseinzadeh, Geographical preference for installation of solar still water desalination technologies in Iran: an analytical hierarchy process (AHP)- based answer, Water (Switzerland), 14 (2022) 265, doi: 10.3390/ w14020265.
  67. Y. Zhao, O. Ramadan, H. Kong, X. Xue, S. Riffat, H. Zheng, Performance analysis and optimization of a novel highefficiency flower-inspired solar still, Energy Convers. Manage., 251 (2022) 114878, doi: 10.1016/j.enconman.2021.114878.
  68. S.J. Patrick, M.G.L. Annaamalai, Enhancing solar still productivity by optimizing operational parameters, Desal. Water Treat., 254 (2022) 1–14.
  69. R. Dev, G.N. Tiwari, Characteristic equation of a passive solar still, Desalination, 245 (2009) 246–265.
  70. A.H. Elsheikh, S.W. Sharshir, A.E. Kabeel, R. Sathyamurthy, Application of Taguchi method to determine the optimal water depth and glass cooling rate in solar stills, Int. J. Sci. Technol., 28 (2021) 731–742.
  71. H.S. Walter Benenson, J.W. Harris, H. Lutz, Handbook of Physics, Springer Science & Business Media, Berlin/Heidelberg, Germany, 1959.
  72. J.M.C. Yunus, A. Çengel, Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Series in Mechanical Engineering, New York, 2014.
  73. J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 128 (2006) 240–250.
  74. S.J. Palm, G. Roy, C.T. Nguyen, Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties, Appl. Therm. Eng., 26 (2006) 2209–2218.
  75. R. Ben Mansour, N. Galanis, C.T. Nguyen, Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids, Appl. Therm. Eng., 27 (2007) 240–249.
  76. R.L. Hamilton, Thermal conductivity of heterogeneous twocomponent systems, Ind. Eng. Chem. Fundam., 1 (1962) 187–191.
  77. X.Q. Wang, A.S. Mujumdar, A review on nanofluids – Part I: theoretical and numerical investigations, Braz. J. Chem. Eng., 25 (2008) 613–630.
  78. A. Kubiaczyk, Evaluation of Uncertainity in Measurements, Student’s Guide, Faculty of Physics, Warsaw University of Technology – Physics Laboratory, 2017.
  79. R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, London, U.K., 1926.
  80. D. Julong, Introduction to grey systems theory, J. Grey Syst., 68 (1989) 1–24.
  81. C.-F. Jeffrey Kuo, T.-L. Su, P.-R. Jhang, C.-Y. Huang, C.-H. Chiu, Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing, Energy, 36 (2011) 3554–3562.