References

  1. X. He, M. Pan, Z. Wei, E.F. Wood, J. Sheffield, A global drought and flood catalogue from 1950 to 2016, Bull. Am. Meteorol. Soc., 101 (2020) 508–535.
  2. G. Merkuryeva, Y. Merkuryev, B.V. Sokolov, S. Potryasaev, V.A. Zelentsov, A. Lektauers, Advanced river flood monitoring, modelling and forecasting, J. Comput. Sci., 10 (2015) 77–85.
  3. V. Meesuk, Z. Vojinovic, A.E. Mynett, A.F. Abdullah, Urban flood modelling combining top-view LiDAR data with groundview SfM observations, Adv. Water Resour., 75 (2015) 105–117.
  4. M.I. Rau, M.H. Hidayatulloh, Y. Suharnoto, C. Arif, Evaluation of flood modelling using online visual media: case study of Ciliwung River at Situ Duit Bridge, Bogor City, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 622 (2021) 1–12.
  5. K.D. Sharma, S. Sorooshian, H. Wheater, Hydrological Modelling in Arid and Semi-Arid Areas, Cambridge University Press, New York, 2007.
  6. A. Abu El-Nasr, J.G. Arnold, J. Feyen, J. Berlamont, Modelling the hydrology of a catchment using a distributed and a semidistributed model, Hydrol. Processes, 19 (2005) 573–587.
  7. W. Jang, D. Yoo, I.-m. Chung, N. Kim, M. Jun, Y. Park, J. Kim, K.J. Lim, Development of SWAT SD-HRU pre-processor module for accurate estimation of slope and slope length of each HRU considering spatial topographic characteristics in SWAT, J. Korean Soc. Water Qual., 25 (2009) 351–362.
  8. S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams, Soil & Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report No. 406, Texas A&M University System, College Station, Texas 77843- 2118, 2011, pp. 1–647. Available at: https://doi.org/10.1016/j. scitotenv.2015.11.063
  9. V. Krysanova, J.G. Arnold, Advances in ecohydrological modelling with SWAT—a review, Hydrol. Sci. J., 53 (2008) 939–947.
  10. Y. Wang, R. Jiang, J. Xie, Y. Zhao, D. Yan, S. Yang, Soil and Water Assessment Tool (SWAT) model: a systemic review, J. Coastal Res., 93 (2019) 22–30.
  11. A. Ullrich, M. Volk, Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity, Agric. Water Manage., 96 (2009) 1207–1217.
  12. M. Geza, J.E. McCray, Effects of soil data resolution on SWAT model stream flow and water quality predictions, J. Environ. Manage., 88 (2008) 393–406.
  13. A.M. Epelde, I. Cerro, J.M. Sánchez-Pérez, S. Sauvage, R. Srinivasan, I. Antigüedad, Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality, Hydrol. Sci. J., 60 (2015) 825–843.
  14. P. Tuppad, K.R.D. Mankin, T. Lee, R. Srinivasan, J.G. Arnold, Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: extended capability and wider adoption, Am. Soc. Agric. Biol. Eng., 54 (2011) 1677–1684.
  15. J.G. Arnold, P.W. Gassman, M.J. White, New Developments in the SWAT Ecohydrology Model, ASABE – 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings, 21-24 February 2010, American Society of Agricultural and Biological Engineers, Universidad EARTH, Costa Rica, 2010, pp. 32–35.
  16. J. Qi, S. Lee, X. Du, D.L. Ficklin, Q. Wang, D. Myers, D. Singh, G.E. Moglen, G.W. McCarty, Y. Zhou, X. Zhang, Coupling terrestrial and aquatic thermal processes for improving stream temperature modeling at the watershed scale, J. Hydrol., 603 (2021) 126983, doi: 10.1016/j.jhydrol.2021.126983.
  17. D.L. Ficklin, Y. Luo, E. Luedeling, M. Zhang, Climate change sensitivity assessment of a highly agricultural watershed using SWAT, J. Hydrol., 374 (2009) 16–29.
  18. B.M. Chambers, S.M. Pradhanang, A.J. Gold, Simulating climate change induced thermal stress in coldwater fish habitat using SWAT model, Water (Switzerland), 9 (2017) 26–28.
  19. M.K. Jha, P.W. Gassman, J.G. Arnold, Water quality modeling for The Raccoon River watershed using SWAT, Am. Soc. Agric. Biol. Eng., 50 (2007) 479–494.
  20. C.D. Ikenberry, M.L. Soupir, M.J. Helmers, W.G. Crumpton, J.G. Arnold, P.W. Gassman, Simulation of daily flow pathways, tile-drain nitrate concentrations, and soil-nitrogen dynamics using SWAT, J. Am. Water Resour. Assoc., 53 (2017) 1251–1266.
  21. W. Shi, M. Huang, Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau, Int. Soil Water Conserv. Res., 9 (2021) 291–304.
  22. S. Paul, M.A. Cashman, K. Szura, S.M. Pradhanang, Assessment of nitrogen inputs into hunt river by onsite wastewater treatment systems via SWAT simulation, Water (Switzerland), 9 (2017) 9080610, doi: 10.3390/w9080610.
  23. S.M. Lencha, M.D. Ulsido, J. Tränckner, Estimating point and nonpoint source pollutant flux by integrating various models, a case study of the Lake Hawassa watershed in Ethiopia’s Rift Valley Basin, Water (Switzerland), 14 (2022), doi: 10.3390/w14101569.
  24. C. Panda, D.M. Das, S.K. Raul, B.C. Sahoo, Sediment yield prediction and prioritization of subwatersheds in the Upper Subarnarekha basin (India) using SWAT, Arabian J. Geosci., 14 (2021), doi: 10.1007/s12517-021-07170-8.
  25. O.M.M. Abdelwahab, G.F. Ricci, A.M. De Girolamo, F. Gentile, Modelling soil erosion in a Mediterranean watershed: comparison between SWAT and AnnAGNPS models, Environ. Res., 166 (2018) 363–376.
  26. R. Mukundan, S.M. Pradhanang, E.M. Schneiderman, D.C. Pierson, A. Anandhi, M.S. Zion, A.H. Matonse, D.G. Lounsbury, T.S. Steenhuis, Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA, Geomorphology, 183 (2013) 110–119.
  27. A.A. Vaighan, N. Talebbeydokhti, A.M. Bavani, Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran, Environ. Earth Sci., 76 (2017), doi: 10.1007/s12665-017-6880-6.
  28. R.K. Bhattacharya, N. Das Chatterjee, K. Das, Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: a comparison between MCDM and SWAT models, Sci. Total Environ., 734 (2020) 139474, doi: 10.1016/j.scitotenv.2020.139474.
  29. V. Krysanova, R. Srinivasan, Assessment of climate and land use change impacts with SWAT, Reg. Environ. Change, 15 (2015) 431–434.
  30. S.M. Pradhanang, R. Mukundan, E.M. Schneiderman, M.S. Zion, A. Anandhi, D.C. Pierson, A. Frei, Z.M. Easton, D. Fuka, T.S. Steenhuis, Streamflow responses to climate change: analysis of hydrologic indicators in a New York city water supply watershed, J. Am. Water Resour. Assoc., 49 (2013) 1308–1326.
  31. R. Jayakrishnan, R. Srinivasan, C. Santhi, J.G. Arnold, Advances in the application of the SWAT model for water resources management, Hydrol. Processes, 19 (2005) 749–762.
  32. E. Nkiaka, N.R. Nawaz, J.C. Lovett, Effect of single and multisite calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: a case study in the Logone catchment, Lake Chad basin, Stochastic Environ. Res. Risk Assess., 32 (2018) 1665–1682.
  33. M.J. White, R.D. Harmel, J.G. Arnold, J.R. Williams, SWAT check: a screening tool to assist users in the identification of potential model application problems, J. Environ. Qual., 43 (2014) 208–214.
  34. R. Srinivasan, C. Santhi, R.D. Harmel, A. Van Griensven, SWAT: model use, calibration, and validation, Am. Soc. Agric. Biol. Eng., 55 (2012) 1491–1508.
  35. J.G. Arnold, P.M. Allen, M. Volk, J.R. Williams, D.D. Bosch, Assessment of different representations of spatial variability on swat model performance, Am. Soc. Agric. Biol. Eng., 53 (2010) 1433–1443.
  36. N. Rusli, M.R. Majid, Z. Yusop, M.L. Tan, S. Hashim, S.N. Bohari, Integrating Manual Calibration and Auto-calibration of SWAT Model in Muar Watershed, Johor, 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), IEEE, Shah Alam, Malaysia, 2017, pp. 197–202.
  37. E. Aldrian, R. Dwi Susanto, Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature, Int. J. Climatol., 23 (2003) 1435–1452.
  38. D. Fianti, Morfologi dan Klasifikasi Tanah, Lembaga Pengembangan Teknologi Informasi dan Komunikasi (LPTIK) Universitas Andala, Padang, 2015.
  39. Statistical Yearbook of Indonesia 2020, Catalog: 1101001, 2020. Available at: https://www.bps.go.id/publication/2020/04/29/ e9011b3155d45d70823c141f/statistik-indonesia-2020.html
  40. M. Sholichin, F. Othman, S. Akib, Assessment of Runoff, Sediment Yield and Nutrient Load on Watershed Using Watershed Modeling, River and Development 2007, Bali, 2007, pp. 1–10. Available at: http://mochsholichin.lecture.ub.ac.id/ files/2020/09/Assessment-of-Runoff-Sediment-Yield-_2007.pdf
  41. M. Sholichin, F. Othman, S. Akib, Preliminary Study of Total Maximum Daily Load (TMDL) for Sediment and Nutrient at Lesti River Basin-Indonesia, 8th APRU Doctoral Students Conference, Tokyo, 2007, pp. 1–22.
  42. R.A. Barkey, M.F. Mappiasse, M. Nursaputra, Model of climate and land-use changes impact on water security in Ambon City, Indonesia, Geoplanning J. Geomatics Plan., 4 (2017) 97, doi: 10.14710/geoplanning.4.1.97-108.
  43. A.S. Nur, M.A. Noor, Hydrological aspect of Batang Alai Weir Watershed due to land use changes into mining areas, Cerucuk, 4 (2021) 61, doi: 10.20527/crc.v4i1.3579.
  44. N. Yusuf, R.A. Barkey, M. Nursaputra, S. Rijal, Mukrimin, The supply of water in Bua District based on spatial planning of Luwu Regency at the 2030s, IOP Conf. Ser.: Earth Environ. Sci., The 2nd International Conference of Interdisciplinary Research on Green Environmental Approach for Sustainable Development 25 June 2020, Gedung Pasca Sarjana, Indonesia, 575 (2020) 012135, doi: 10.1088/1755-1315/575/1/012135.
  45. I. Febrianti, I. Ridwan, N. Nurlina, Model SWAT (Soil and Water Assesment Tool) untuk Analisis Erosi dan Sedimentasi di Catchment Area Sungai Besar Kabupaten Banjar, J. Fis. FLUX., 15 (2018) 20, doi: 10.20527/flux.v15i1.4506.
  46. M.E. Dhoke, A. Kusumandari, S. Senawi, Erosion Level and Soil and Water Conservation Engineering Plan in Waewoki Sub Watershed, Aesesa Watershed, Ngada Regency, East Nusa Tenggara Province, J. Mns. Dan Lingkung., 25 (2020) 7, doi: 10.22146/jml.23045.
  47. A. Wiyono Wit Saputra, N. Azazi Zakaria, C. Ngai Weng, Changes in land use in the lombok river basin and their impacts on river basin management sustainability, IOP Conf. Ser.: Earth Environ. Sci., 437 (2020) 1–10.
  48. M. Farid, A. Rizaldi, A. Prahitna, M.S. Badri Kusuma, A.A. Kuntoro, H. Kardhana, Rapid hydropower potential assessment for remote area by using global data, IOP Conf. Ser.: Earth Environ. Sci., 813 (2021) 1–10.
  49. Y. Falo, D. Djunaedi, A. Nama, Analisis Debit Air Limpasan Permukaan (Run Off) Di Daerah Aliran Sungai (Das) Manikin Kabupaten Kupang Provinsi Nusa Tenggara Timur, JUTEKS J. Tek. Sipil., 4 (2019) 45, doi: 10.32511/juteks.v4i2.299.
  50. L. Subehi, H. Wibowo, I. Ridwansyah, Characteristics of Physical Catchment at Lake Buyan and Lake Tamblingan, Bali – Indonesia 1, Pros. Semin. Nas. Limnol. VII-2014, 2014, pp. 358–367.
  51. S.M. Yusuf, K. Murtilaksono, M. Harjianto, E. Herlina, The utilization of satellite imagery data to predict hydrology characteristics in Dodokan watershed, Procedia Environ. Sci., 33 (2016) 36–43.
  52. R. Nandini, Environmental impact of private forest management in Central Lombok, West Nusa Tenggara, IOP Conf. Ser.: Earth Environ. Sci., 407 (2019) 1–5.
  53. R. Nandini, A. Kusumandari, T. Gunawan, R. Sadono, Assessment of land use impact on hydrological response using soil and water analysis tool (SWAT) in Babak watershed, Lombok Island, Indonesia, Agric. Nat. Resour., 53 (2019) 635–642.
  54. A. Chairil, S. Rijal, M. Nursaputra, M.F. Mappiase, Impact of land use change on hydrological conditions in the Karajae watershed, South Sulawesi Province, IOP Conf. Ser.: Earth Environ. Sci., 886 (2021) 012079, doi: 10.1088/1755-1315/886/1/012079.
  55. E.B. Fitrian, W.G. Boro, The potential for flooding in Koro Bakara watershed area, East Luwu due to the land conversion, IOP Conf. Ser.: Earth Environ. Sci., 1088 (2021) 012110, doi: 10.1088/1757-899x/1088/1/012110.
  56. W. Yuliana, S. Ery, H. Riyanto, Analysis of the correlation between land use changes in sub watershed wuno toward lifetime of Wuno Reservoir, Sigi District, Central Sulawesi Province, Civ. Environ. Sci., 2 (2019) 1–14.
  57. M. Sholichin, T.B. Prayogo, Assessment of the impact of land cover type on the water quality in Lake Tondano using a SWAT Model, J. Southwest Jiaotong Univ., 56 (2021) 303–312.
  58. S. Surahman, H. Zubair, A. Munir, M. Achmad, Impact of land use change on groundwater flow using SWAT model, study case: Tanralili Sub Watershed, IOP Conf. Ser.: Earth Environ. Sci., 807 (2021) 1–9.
  59. M.F. Muis, R.A. Barkey, U. Arsyad, M. Nursaputra, Analysis of micro-hydro potential based on landuse planning in the Kelara watershed, IOP Conf. Ser.: Earth Environ. Sci., 575 (2020) 1–18.
  60. M.I. Putera, A. Munir, M. Achmad, Suhardi, Land use assessment of Jeneberang watershed using hydrology and water availability analysis, IOP Conf. Ser.: Earth Environ. Sci., 473 (2020) 1–11.
  61. G. Endosc, Y.A.B.E. Advances, E. Esophagitis, G. Endoscopy, Simulasi Skenario Penutupan Lahan Untuk Melihat Kondisi Hidrologi Di Das Lisu, Kabupaten Barru, J. Hutan Dan Masy., 11 (2019) 49–58.
  62. S.M. Yusuf, Model of soil and water conservation measures application based on district spatial planning in Mamasa Watershed, South Sulawesi, Geoplanning J. Geomatics Plan., 4 (2017) 263, doi: 10.14710/geoplanning.4.2.263-272.
  63. M. Sholichin, W. Qadri, Predicting flood hazards area using swat and HEC-RAS simulation in Bila river, South Sulawesi, IOP Conf. Ser.: Earth Environ. Sci., 437 (2020) 1–10.
  64. M. Nursaputra, R.A. Barkey, S. Rijal, C. Anila, M.F. Mappiasse, The direction of land-use for hydrology balance and development of low-carbon emissions in the Jenelata Catchment area, IOP Conf. Ser.: Earth Environ. Sci., 681 (2021) 1–14.
  65. D.A. Mandy, R.A. Barkey, U. Arsyad, M. Nursaputra, Comparison of water availability in 2015 and 2022 based on land cover in the Maros River Basin, IOP Conf. Ser.: Earth Environ. Sci., 575 (2020) 1–14.
  66. C.T. Van, D.Q. Tri, N. Aniza, M. Hanan, A. Abas, Land use planning for floods mitigation in Kelara Watershed, South Sulawesi Province, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 575 (2020) 1–14.
  67. C. Anila, R.A. Barkey, U. Arsyad, M. Nursaputra, Land use planning for mitigation of erosion, sediments, and stabilization of water discharge in the Mamasa Watershed, IOP Conf. Ser.: Earth Environ. Sci., 575 (2020) 1–17.
  68. R. Barkey, M. Nursaputra, M.F. Mappiase, M. Achmad, M. Solle, M. Dassir, Climate change impacts related flood hazard to communities around Bantimurung Bulusaraung National Park, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 235 (2019) 1–13.
  69. R.A. Barkey, A.S. Soma, M. Nursaputra, M.F. Mappeasse, Modeling of climate change impact on water availability in Metropolitan Mamminasata, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 280 (2019) 1–15.
  70. Mulyadi, Analysis of water sources in Karajae Watershed flows in supporting raw water availability Pare-Pare City, J. Agrotek., 3 (2019) 143–155.
  71. S.S.A. Syukri, M. Rijal, Classification of drought level in Limboto watershed, J. Sains Inf. Geogr., I (2018) 40–43.
  72. T. Ferijal, M. Bachtiar, D.S. Jayanti, D. Jafaruddin, Modeling hydrologic response to land use and climate change in the Krueng Jreu sub watershed of Aceh Besar, Aceh Int. J. Sci. Technol., 5 (2016) 116–125.
  73. S.D. Tarigan, Sunarti, K. Wiegand, C. Dislich, B. Slamet, J. Heinonen, K. Meyer, Mitigation options for improving the ecosystem function of water flow regulation in a watershed with rapid expansion of oil palm plantations, Sustain. Water Qual. Ecol., 8 (2016) 4–13.
  74. M. Afifa, A. Dina, E.R. Syofyan, Wisafri, Analisa Debit Andalan Pada Das Batang Arau Dengan Menggunakan Model Soil and Water Assessment Tool (SWAT), J. Ilm. Poli Rekayasa., 16 (2020) 34, doi: 10.30630/jipr.16.1.191.
  75. I. Ridwansyah, S. Larashati, The hydromorphological characteristics of the Bonan Dolok Watershed as a basis for ikan batak (Tor spp. and Neolissochilus spp.) conservation, IOP Conf. Ser.: Earth Environ. Sci., 535 (2020) 1–12.
  76. A. Salsabilla, E. Kusratmoko, Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model, AIP Conf. Proc., (2017) 1–8, doi: 10.1063/1.4991296.
  77. F. Irsyad, E.G. Ekaputra, Analisis Wilayah Konservasi Daerah Aliran Sungai (Das) Kuranji Dengan Aplikasi Swat, J. Teknol. Pertan. Andalas., 19 (2015) 39–45.
  78. Nurdin, Joleha, Bochari, I. Suprayogi, Skenario Perencanan dan Pengelolaan Sub DAI Sei Tanduk pada Hutan Adat Masyarakat Desa Rumbio Menggunakan Soil & Water Assesment TOOL (SWAT) (SWAT), Semin. Nas. Pelestarian Lingkung 2019, 2014, pp. 40–51.
  79. Nasrullah, B. Kartiwa, Landuse change analysis in relation to hydrological characteristic of Krueng Aceh Watershed, J. Tanah Dan Iklim., 31 (2010) 81–98.
  80. E.M.S. Yamamoto, T. Sayama, K. Yamamoto, Apip, Comparison of runoff generation methods for land use impact assessment using the swat model in humid tropics, Hydrol. Res. Lett., 14 (2020) 81–88.
  81. D.P. Utomo, I. Suprayogi, M. Fauzi, Kalibrasi Model Soil & Water Assesment Tool (SWAT) Untuk Pengelolaan Sub DAS Tapung Kiri, Aptek, 12 (2020) 147–155.
  82. F. Arlius, I. Berd, F. Setyawan, Calibration and validation of the SWAT hydrological model for the Air Dingin watershed, IOP Conf. Ser.: Earth Environ. Sci., 515 (2020) 1–7.
  83. S. Tarigan, C. Stiegler, K. Wiegand, A. Knohl, K. Murtilaksono, Relative contribution of evapotranspiration and soil compaction to the fluctuation of catchment discharge: case study from a plantation landscape, Hydrol. Sci. J., 65 (2020) 1239–1248.
  84. Y. Kristanto, S.D. Tarigan, T. June, E.D. Wahjunie, Evaluation of different runoff curve number (CN) approaches on water regulation services assessment in intermittent micro catchment dominated by oil palm plantation, Agromet, 35 (2021) 73–88.
  85. A.F. Definnas, R.F. Reyandal, E.R. Syofyan, Wisafri, Analysis of the effect of change in land use on the Batang Kuranji River Basin using Soil and Water Assessment Tool (SWAT) models, J. Ilm. Poli Rekayasa, 15 (2020) 1, doi: 10.30630/jipr.15.2.161.
  86. I. Ridwansyah, H.A. Rustini, M. Yulianti, Apip, E. Harsono, Water balance of Maninjau watershed with SWAT hydrological model, IOP Conf. Ser.: Earth Environ. Sci., 535 (2020) 1–12.
  87. S.D. Tarigan, A. Faqih, Impact of changes in climate and land use on the future streamflow fluctuation: case study Merangin Tembesi Watershed, Jambi Province, Indonesia, J. Pengelolaan Sumberd. Alam Dan Lingkung, 9 (2019) 182–189.
  88. Nurdin, S. Bahri, Zulkarnain, Sukendi, Hydrological characteristics analysis due to changes in land use with the SWAT model in the Koto Panjang hydropower catchment area, Int. J. Civ. Eng. Technol., 10 (2019) 330–340.
  89. Edwin, A. Saidi, Aprisal, Yulnafatmawita, I. Ridwansyah, Prediction of surface runoff and erosion by hydrological SWAT model in Sumpur watershed, West Sumatra, IOP Conf. Ser.: Earth Environ. Sci., 347 (2019) 1–9.
  90. M.C. Alexander, A. Sapei, Analisis Potensi Air Sungai Pada Embung 190 Di PG. Bungamayang PTPN VII, Lampung, J. Tek. Sipil Dan Lingkung., 3 (2018) 77–84.
  91. R. Rahmad, A. Nurman, Integrasi Model SWAT dan SIG dalam Upaya Menekan Laju Erosi DAD Deli, Sumatera Utara, Maj. Geogr. Indones., 31 (2017) 46, doi: 10.22146/mgi.24232.
  92. A.D. Sunandar, E. Suhendang, I.N. Surati, Landuse change impact on hydrologic responses in Asahan Watershed, J. Penelit. Hutan Tanam., 13 (2016) 49–60.
  93. A. Sandhyavitri, S. Sutikno, M. Iqbal, Analisis Pengaruh Perubahan Tata Guna Lahan Terhadap Ketersedian Air Di Daerah Aliran Sungai (Das) Siak, Provinsi Riau, J. Tek. Sipil., 13 (2015) 146–157.
  94. Z. Mubarok, K. Murtilaksono, D. Wahjunie, Response of landuse change on hydrological characteristics of Way Betung Watershed - Lampung, J. Penelit. Kehutan. Wallacea, 4 (2015) 1–10.
  95. T. Ferijal, S. Mechram, D.S. Jayanti, P. Satriyo, Keliling reservoir catchment area modeling using SWAT model, J. Agritech., 35 (2015) 121, doi: 10.22146/agritech.13037.
  96. T. Ferijal, Predicting runoff and erosion rate from Krueng Jreu subwatershed using SWAT model, Agrista, 16 (2012) 29–38.
  97. T. Ferijal, SWAT model application to simulate discharge from Krueng Meulesong subwatershed using the actual and predicted climatological data, Rona Tek. Pertan., 6 (2013) 398–404.
  98. Nurdin, I. Suprayogi, Analisis Koefisien Regim Sungai (Krs) Di Waduk PLTA Kotopanjang Menggunakan Model Hidrologi SWAT, Pros. Semin. Nas. Pengelolaan Drh. Aliran Sungai Secara Terpadu 2017, 2017, pp. 387–398.
  99. Nurdin, S. Bahri, Zulkarnain, Sukendi, Analysis of the effect of land use changes on hydrology characteristics. Case study: the catchment area of Koto Panjang Hydroelectric Power, MATEC Web Conf., 276 (2019) 04014, doi: 10.1051/matecconf/201927604014.
  100. H. Setiawan, I. Rudiarto, J.W. Hidayat, Assessment of sedimentation rates in the Way Seputih Watershed Area, E3S Web Conf., (2020) 1–12, doi: 10.1051/e3sconf/202020206037.
  101. E. Susanto, B.I. Setiavvan, Y. Suharnoto, Liyantono, Evaluation of water debit in oil palm plantation watershed using the soil water assessment tool (swat), Int. J. Civ. Eng. Technol., 8 (2017) 332–341.
  102. S. Tarigan, K. Wiegand, Sunarti, B. Slamet, Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia, Hydrol. Earth Syst. Sci., 22 (2018) 581–594.
  103. E.G. Ekaputra, Yonariza, D. Wardiman, Economic value of water yields on critical land conservation in Kuranji watershed, IOP Conf. Ser.: Earth Environ. Sci., 757 (2021) 1–8.
  104. H.A. Rustini, E. Harsono, I. Ridwansyah, Modeling approach to determine priority sub-catchment for volcanic lake restoration, IOP Conf. Ser.: Earth Environ. Sci., 789 (2021) 1–8.
  105. Jefrizon, M. Fauzi, Nurdin, Pengaruh Perubahan Tutupan Lahan Terhadap Aliran Permukaan pada Sub DAS Kampar Kanan, J. Rab Contruction Res., 6 (2021) 22–38.
  106. I. Gustio, D.P. Jingga, E.R. Syofyan, C. Muharis, Analysis of Land Erosion in the Batang Agam Watershed Using the SWAT Model, J. Ilm. Poli Rekayasa., 16 (2020) 11, doi: 10.30630/jipr.16.1.189.
  107. N. Fadhilah, E. Kusratmoko, Kuswantoro, The impact of land use on hydrological characteristics and erosion rate of Cilutung watershed with SWAT Model, E3S Web Conf., (2018) 1–7, doi: 10.1051/e3sconf/20187303029.
  108. N.D.K. Nursugi, E.H. Windari, E.H. Windari, Hydrological Modelling Using SWAT Model Case Study Cimanuk Watershed, RG, (2014) 1–5, doi: 10.13140/RG.2.2.31372.92801.
  109. C. Rahayuningtyas, R.S. Wu, R. Anwar, L.C. Chiang, Improving AVSWAT stream flow simulation by incorporating groundwater recharge prediction in the upstream lesti watershed, East Java, Indonesia, Terr. Atmos. Ocean. Sci., 25 (2014) 881–892.
  110. I. Ridwansyah, H. Pawitan, N. Sinukaban, Ecohydrological Modeling Based Sustainable Basin Management of Kracak Hydropower Dam, West Java, Int. Conf. Ecohydrol., (2014) 1–13.
  111. E. Junaidi, The role of agroforestry implementation to water yield in Cisadane watershed, J. Penelit. Agrofor., 1 (2013) 41–53.
  112. A. Prasena, Assessing the effects of land use change on runoff in Bedog subwatershed Yogyakarta, Indones. J. Geogr., 45 (2013) 48, doi: 10.22146/indo.j.geog,2406.
  113. F. Othman, M. Sholichin, Predicting impact of fertilizer usage on water quality, Sutami Reservoir, Indonesia, J. Environ. Hydrol., 20 (2012) 1–12.
  114. E. Junaidi, S.D. Tarigan, Application SWAT hydrology model in Cisadane watershed management, J. Penelit. Hutan Dan Konserv. Alam., 9 (2012) 221–237.
  115. R.D. Yustika, S.D. Tarigan, Y. Hidayat, U. Sudadi, Simulation of land management in use Hulu Ciliwung SWAT model, Inform. Pertan., 21 (2012) 69–76.
  116. E.J. Dan, S.D. Tarigan, Forest Influence in Water System Arrangement and Sedimentation Process on Watershed: Case Study in the Cisadane Watershed, 2011, pp. 155–176.
  117. I. Ridwansyah, Impact of Landuse Change on Water Yield of Upper Cimanuk Catchment Using SWAT, 3rd GEN Netw. Int. Semin. 4th Rispescia Annu. Semin., 2010, pp. 7–8.
  118. D. Priambodo, E. Suhartanto, S. Sumiadi, Analysis of runoff curve number distribution into surface runoff of Lesti Watershed, Civ. Environ. Sci., 4 (2021) 62–75.
  119. S.D. Tarigan, Accuracy of mapwindow and SWAT watershed model in simulating hydrologic characteristics of Cisadane Watershed, West Java Indonesia, J. Hidrolitan., 1 (2010) 10–17.
  120. H. Nurcahyo, I. Soekarno, I.K. Hadihardaja, A. Rosyidie, Development flow duraton curve for criticality assesment of river basin applied at the upper citarum river basin, Indonesia, Int. J. GEOMATE, 13 (2017) 46–53.
  121. H. Habib, Ngadisih, R. Tirtalistyani, S. Susanto, M. Nurudin, Prediction of surface runoff and erosion rate using SWAT (soil water assesment tool) model in Selopamioro catchment as directions of soil and water conservation, IOP Conf. Ser.: Earth Environ. Sci., 653 (2021) 1–7.
  122. G.U. Nugraha, I. Ridwansyah, D. Marganingrum, P. Hartanto, R.F. Lubis, H. Bakti, Transport modelling in Jakarta groundwater basin using QSWATMOD, IOP Conf. Ser.: Earth Environ. Sci., 789 (2021) 1–12.
  123. A. Pamungkas, S. Purwitaningsih, Is Surabaya being planned as a low-risk city?, Int. Rev. Spat. Plan. Sustain. Dev., 9 (2021) 78–92.
  124. H.R. Dwiatmojo, Komariah, A.H. Ramelan, E. Priyanto, Mapping of rain water harvesting potential at Keduang Sub-watershed, Central Java, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 824 (2021) 1–11.
  125. M. Fakhrudin, I. Ridwansyah, D. Daruati, H. Wibowo, Conservation of Jatigede Reservoir catchment area based on sediment and water yield control, IOP Conf. Ser.: Earth Environ. Sci., 535 (2020) 1–8.
  126. M. Yahya, The potential for rainwater harvesting in Makassar Coastal Area, South Sulawesi, Indonesia, Int. J. Adv. Res. Eng. Technol., 11 (2020) 1414–1421.
  127. S. Purwitaningsih, A. Pamungkas, P.T. Setyasa, R.P. Pamungkas, A.R. Alfian, S.A.R. Irawan, Flood-reduction scenario based on land use in Kedurus river basin using SWAT hydrology model, Geoplanning J. Geomatics Plan., 7 (2020) 87–94.
  128. N. Christanto, M.A. Setiawan, A. Nurkholis, S. Istikhomah, D.W. Anajib, A.D. Purnomo, Rainfall-runoff and sediment yield modelling in volcanic catchment using SWAT, a case study in Opak watershed, IOP Conf. Ser.: Earth Environ. Sci., 256 (2019) 1–10.
  129. H. Marhaento, M.J. Booij, T.H.M. Rientjes, A.Y. Hoekstra, Sensitivity of streamflow characteristics to different spatial land-use configurations in tropical catchment, J. Water Resour. Plann. Manage., 145 (2019) 04019054, doi: 10.1061/ (asce)wr.1943-5452.0001122.
  130. A. Pamungkas, S. Purwitaningsih, Green and grey infrastructures approaches in flood reduction, Int. J. Disaster Resil. Built Environ., 10 (2019) 343–362.
  131. E. Hermawan, S.R.P. Sitorus, S.D. Tarigan, Spatial dynamics of land use change to hydrological response in the upstream of Ciliwung Watershed, West Java Province, Indonesia, Adv. Environ. Sci. - Int. J. Bioflux Soc., 11 (2019) 122–132.
  132. A.G. Salim, I.W.S. Dharmawan, B.H. Narendra, Pengaruh Perubahan Luas Tutupan Lahan Hutan Terhadap Karakteristik Hidrologi DAS Citarum Hulu, J. Ilmu Lingkung, 17 (2019) 333, doi: 10.14710/jil.17.2.333-340.
  133. Q. Dianasari, U. Andawayanti, E.N. Cahya, Pengendalian Erosi Dan Sedimen Dengan Arahan Konservasi Lahan Di Das Genting Kabupaten Ponorogo, J. Tek. Pengair., 9 (2018) 95–104.
  134. S.B. Sipayung, A. Nurlatifah, B. Siswanto, Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data, J. Phys. Conf. Ser., (2018) 1–9, doi: 10.1088/1742-6596/1022/1/012042.
  135. L.P.P. Lestari, D.K. Arya, R. Suwarman, M.R. Syahputra, Verification of upper Citarum River discharge prediction using climate forecast system version 2 (CFSv2) output, AIP Conf. Proc., (2018) 1–11, doi: 10.1063/1.5047325.
  136. M. Rofiq Ginanjar, S. Sandy Putra, Sediment trapping analysis of flood control reservoirs in Upstream Ciliwung River using SWAT Model, IOP Conf. Ser.: Earth Environ. Sci., (2017) 1–8, doi: 10.1088/1755-1315/71/1/012014.
  137. H. Kardhana, D.K. Arya, I.K. Hadihardaja, Widyaningtyas, E. Riawan, A. Lubis, Small hydropower spot prediction using SWAT and a diversion algorithm, case study: upper Citarum Basin, AIP Conf. Proc., (2017) 1–9, doi: 10.1063/1.5011625.
  138. S. Maskey, M. Marence, M.E. Mcclain, Climate Change Impacts on the Reservoir Operation in the Cascade Dams in West Java, Indonesia, 85th Annu. Meet. Int., 2017.
  139. L. Hidayat, P. Sudira, S. Susanto, R. Jayadi, J.W. Supratman Kandang, L. Bengkulu, The Effect of Land Use Change to Land Erosion and Sediment Transported on The Cacthment Area of Mrica Reservoir, Int. Semin. Promot. Local Resour. Food Heal., Bengkulu, 2015, pp. 12–13.
  140. P.N. Wardhana, R. Afif, Streamflow simulation of Progo River by using SWAT Model, IOP Conf. Ser.: Mater. Sci. Eng., 1051 (2021) 012067, doi: 10.1088/1757-899x/1051/1/012067.
  141. M. Sholichin, T.B. Prayogo, S.M. Beselly, Assessment of Sedimentation Patterns and the Threat of Flooding due to Reclamation in the Lamong Bay, Indonesia, 1st Young Sci. Int. Conf. Water Resour. Dev. Environ. Prot. Malang, Indones., 5–7 June 2015, 2015, pp. 1–22.
  142. I. Ridwansyah, H. Pawitan, N. Sinukaban, Y. Hidayat, Potensi Sumberdaya Air untuk Pengembangan PLTMH di Das Cisadane Hulu Berdasarkan Pemodelan Hidrologi SWAT, LIMNOTEK, 2015 (2015) 1–11.
  143. R. Atiqi, E. Kusratmoko, T.L. Indra, Modelling Approach to Calculate Nitrate Consentration Distribution in River Using Soil and Water Assesment Tool Case Study: Rivers in Bojongsari and Sawangan Sub-Districts, Depok, Maj. Ilm. Globë Vol. 16 (2014) 157–164.
  144. S.K. Jain, W. Pramudio, D. Khare, Assessing the Impact of Climate Change on Surface Water Availability and Hydro Power Generation from an Existing Project, Preceedings, 2012, pp. 1–11.
  145. C. Rahayuningtyas, R.S. Wu, R. Anwar, Incorporation groundwater recharge with AVSWAT model streamflow by using water table fluctuation, J. Tek. Pengair., 4 (2012) 1–9.
  146. R. Asmaranto, E. Suhartanto, M. Yuanita, Aplikasi Model AVSWAT 2000 untuk Memprediksi Erosi, Sedimentasi dan Limpasan di DAS Sampean, J. Tek. Pengair., 2 (2011) 79–85.
  147. H. Marhaento, M.J. Booij, N. Rahardjo, N. Ahmed, Impacts of forestation on the annual and seasonal water balance of a tropical catchment under climate change, For. Ecosyst., 8 (2021) 1–16.
  148. Bakhtiar, Erosion Index Formulation with Respect to Reservoir Life in the Upper Citarum Watershed, MATEC Web Conf., 2018, pp. 1–6, doi: 10.1051/matecconf/201814703002.
  149. S.D. Tarigan, Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed, IOP Conf. Ser.: Earth Environ. Sci., 31 (2016) 1–10.
  150. L. Hidayat, B. Sulistyo, The simulation of land use change on soil erosion and sediment transported using SWAT hidrological models in the upstream of Mrica Reservoir Catchment Area, J. L. Restor., (2021) 9–17,
    doi: 10.31186 terra.2.1.9-17.
  151. G. Firdaus, O. Haridjaja, S.D. Tarigan, Hydrological Response Analysis for the Application of Soil Conservation Techniques in Sub-watershed Lengkong Using SWAT Model, J. Ilmu Tanah Dan Lingkung., 16 (2014) 16, doi: 10.29244/jitl.16.1.16-23.
  152. M.T. Widyastuti, M. Taufik, Long-term Monthly Discharge Prediction for Cimanuk Watershed, Agromet., 33 (2019) 96–104.
  153. L. Hidayat, P. Sudira, S. Susanto, R. Jayadi, Validation of The SWAT Hydrological Model on The Catchment Area of Mrica Reservoir, Agritech., 36 (2017) 467, doi: 10.22146/agritech.16772.
  154. A. Setyorini, D. Khare, S.M. Pingale, Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia, Appl. Geomatics, 9 (2017) 191–204.
  155. J. Hadihardaja, I.K. Hadihardaja, Pengaruh Curah Hujan Rata-rata Tahunan terhadap Indeks Erosi dan Umur Waduk pada DAS Citarum Hulu, Media Komun. Tek. Sipil., 19 (2014) 41–53.
  156. Y.P.S. Pane, M. Sholichin, R. Asmaranto, Analisa Erosi di DAS Kali Lamong Menggunakan Pendekatan ArcSWAT, J. Teknol. Dan Rekayasa Sumber Daya Air., 1 (2021) 876–889.
  157. N.E. Putri, K. Amaru, I. Ridwansyah, Analisis Respon Hidrologi dan Simulasi Konservasi Tanah-Air di Sub Das Cicatih Menggunakan Model Soil and Water Assessment Tool (SWAT), Pros. Semin. Nas. Hari Air Dunia, 2021, pp. 128–135.
  158. Z. Erwanto, D.D. Pranowo, S. Dwi, A. Holik, A. Husna, Hydrological Modeling Using SWAT Due to Landslides in the Badeng Watershed, Adv. Eng. Res., 2021, pp. 402–410.
  159. B.S. Wiwoho, I.S. Astuti, I. Abdul, G. Alfarizi, H.R. Sucahyo, Validation of three daily satellite rainfall products in a humid tropic watershed, Brantas, Indonesia: implications to land characteristics and hydrological modelling, Hydrology, 8 (2021) 1–22.
  160. V.S. Putra, G. Halik, R.U. Agung Wiyono, Assessment of drought hazard: a case study in Sampean Baru Watershed, Bondowoso Regency, J. Tek. Sipil Dan Perenc., 23 (2021) 56–63.
  161. L.M. Rachman, E. Nursari, D.P.T. Baskoro, Application of SWAT in selecting soil and water conservation techniques for preparing management recommendation of Cilemer watershed, Banten, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 622 (2021) 1–11.
  162. R. Bushron, L.M. Rachman, D.P.T. Baskoro, Projected conservation of agricultural land to prevent detrimental effects of land-use changes upstream Brantas Watershed in Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 756 (2021) 1–8.
  163. I. Indarto, M. Mandala, Modelling erosion and sedimentation in a small watershed, East Java, Indonesia, J. Water L. Dev., 50 (2021) 265–273.
  164. E. Ramadhani, S. Suprayogi, M.P. Hadi, Pengaruh Perubahan Penggunaan Lahan Terhadap Limpasan Menggunakan Multidata Iklim Satelit di Sub DAS Samin, Media Komun. Geogr., 22 (2021) 31–50.
  165. H.N. Syahdiba, A. Kusumandari, Estimation of erosion using Soil and Water Assessment Tool (SWAT) model in Samin Sub-watershed, Karanganyar and Sukoharjo Districts, Jawa Tengah, IOP Conf. Ser.: Earth Environ. Sci., 686 (2021) 1–9.
  166. P.A. Widyasa, E. Kusratmoko, K. Marko, Estimation of erosion rate in Cileungsi upper watershed Bogor Regency, IOP Conf. Ser.: Earth Environ. Sci., 481 (2020) 1–5.
  167. M. Sholichin, F. Othman, S. Akib, Evaluating and Estimating the Effect of Land Used Changed on Water Quality at Selorejo Reservoir, Indonesia, 30th Hydrol. Water Resour. Symp. HWRS 2006, 2020, pp. 1–7.
  168. N. Widiatmoko, S.D. Tarigan, E.D. Wahjunie, Analisis Respons Hidrologi untuk Mendukung Perencanaan Pengelolaan Sub- DAS Opak Hulu, Daerah Istimewa Yogyakarta, J. Ilmu Pertan. Indones., 25 (2020) 503–514.
  169. I. Ridwansyah, M. Yulianti, A. Shin, Y. Shimizu, H. Wibowo, The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia, Limnology, (2020) 1–12.
  170. A. Husna, R. Suwarman, A.M. Ramdhan, Surface water-groundwater coupled modelling for watershed water resources sustainability assessment, IOP Conf. Ser.: Earth Environ. Sci., 581 (2020) 1–8.
  171. C.T. Nugraheni, H. Pawitan, Y.J. Purwanto, I. Ridwansyah, Effectiveness of situ for Ciliwung Flood Mitigation in Bogor Regency, IOP Conf. Ser.: Earth Environ. Sci., 477 (2020) 1–19.
  172. M.K.R. Basthoni, Analisis Perubahan Tata Guna Lahan Terhadap Debit Banjir Sub-Sub DAS Keyang-Slahung- Tempuran (KST), Teras J., 10 (2020) 189, doi: 10.29103/ tj.v10i2.309.
  173. K. Noda, K. Yoshida, H. Shirakawa, U. Surahman, K. Oki, Effect of land use change driven by economic growth on sedimentation in river reach in southeast asia —a case study in upper citarum river basin, J. Agric. Meteorol., 73 (2017) 22–30.
  174. R. Septianita, R. Yusuf, Mardiani, Analysis of erosion and sedimentation in predicting the life time of the Cieunteung Retention Basin, IOP Conf. Ser.: Earth Environ. Sci., 437 (2020) 1–10.
  175. M.W. Sujarwo, I. Indarto, M. Mandala, Pemodelan Erosi dan Sedimentasi di DAS Bajulmati: Aplikasi Soil dan Water Assesment Tool (SWAT), J. Ilmu Lingkung., 18 (2020) 220–230.
  176. W.U. Utami, E. Dwi Wahjunie, S. Darma Tarigan, Hydrological characteristics and management based on hydrologic modeling Soil and Water Assessment Tool in Cisadane Hulu Watershed, J. Ilmu Pertan. Indones., 25 (2020) 342–348.
  177. D. Ainunisa, G. Halik, W.Y. Widiarti, Pemodelan Perubahan Tataguna Lahan Terhadap Debit Banjir DAS Tanggul, Jember Menggunakan Model SWAT (Soil and Water Assessment Tool), Rekayasa Sipil., 14 (2020) 154–161.
  178. J. Kim, Land use scenarios for hydrological conditions improvement in Cidurian Watershed, J. Bimbing. Dan Konseling., 7 (2019) 53–60.
  179. E. Suryani, S.D. Tarigan, Optimizing Land Use Planning using Geographic Information System (GIS) and Soil and Water Assessment Tool (SWAT) (A Case Study at Cijalupang Watershed, Bandung, West Java), J. Ilmu Tanah Dan Lingkung., 11 (2019) 63–70.
  180. K. Ramadhan, Supriatna, Erosion rate prediction model ssing SWAT and CA-Markov methods (case study: Upper Ci Catih Catchment Area), IOP Conf. Ser.: Earth Environ. Sci., 311 (2019) 1–7.
  181. I. Ridwansyah, M. Yulianti, H. Wibowo, Soil water analysis tools (SWAT) hydrology modelling as a basis for spatial planning: A case study in Cimandiri Watershed, West Java Province, IOP Conf. Ser.: Earth Environ. Sci., 380 (2019) 1–9.
  182. I.S. Astuti, K. Sahoo, A. Milewski, D.R. Mishra, Impact of land use land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed, Water Resour. Manage., 33 (2019) 4087–4103.
  183. L.M. Rachman, D. Sulaeman, Y. Hidayat, D.P.T. Baskoro, Study of land use change for preparation of watershed management planning, Int. J. Appl. Phys. Sci., 5 (2019) 64–72.
  184. A.Z. Ramdani, R. Haribowo, Analisa Pemodelan Kualitas Air Sub Das Lesti Dengan Aplikasi Arcswat 2012, J. Tek. Pengair., 9 (2018) 138–151.
  185. S.P. Nugroho, L.D.W. Handayani, R. Meidiza, G. Munggaran, Landuse change analysis for hydrology response and planning management of Cibeet Sub- Watershed, West Java, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 284 (2019) 1–8.
  186. A. Ansari, T. Kato, A. Fitriah, Simulating streamflow through the SWAT model in The Keduang Sub-Watershed, Wonogiri Regency, Indonesia, Agritech., 39 (2019) 60–69.
  187. C.T. Nugraheni, H. Pawitan, Y.J. Purwanto, I. Ridwansyah, Water Balance of Situ Cikaret and Situ Kabantenan in Bogor Regency Using SWAT Hydrological Modeling, Limnotek Perair. Darat Trop. Di Indones., 26 (2019) 89–102.
  188. N. Christanto, M.A. Setiawan, A. Nurkholis, S. Istiqomah, J. Sartohadi, M.P. Hadi, Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT, Maj. Geogr. Indones., 32 (2018) 50, doi: 10.22146/mgi.32280.
  189. M. Kusumawardani, Y. Hidayat, K. Murtilaksono, Hydrological response and water quality analysis of Cisangkuy Watershed, J. Ilmu Tanah Dan Lingkung., 20 (2018) 49–56.
  190. E. Junaidi, Y. Indrajaya, hydrological responses of agroforestry system application which is not based on land suitability, a case study in Cimuntur Watershed, J. Penelit. Kehutan. Wallacea., 7 (2018) 69–81.
  191. N. Alim, S.D. Tarigan, D.P. Tejo Baskoro, E.D. Wahjunie, Parameter sensitivity test of SWAT hydrological model on two different resolutions (a case study of upper Cisadane Subbasin, West Java), J. Trop. Soils., 23 (2018) 47–53.
  192. M.A. Utamahadi, N.H. Pandjaitan, M.I. Rau, Land use change impacts on discharge analysis using SWAT model at Ciherang Pondok DAM catchment area, IOP Conf. Ser.: Earth Environ. Sci., 149 (2018) 1–9.
  193. H. Marhaento, M.J. Booij, A.Y. Hoekstra, Hydrological response to future land-use change and climate change in a tropical catchment, Hydrol. Sci. J., 63 (2018) 1368–1385.
  194. Y. Anwar, I. Setyasih, M.A. Setiawan, N. Christanto, Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 148 (2018) 1–10.
  195. S. Mechram, M. Mawardi, P. Sudira, Application model AVSWAT2000 to predict surface runoff, erosion, and sedimentation in Keduang Watershed: Upper Bengawan Solo Watershed, Agritech, 32 (2013) 325–330.
  196. I. Ridwansyah, M. Fakhrudin, H. Wibowo, M. Yulianti, Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of best management practices in Jatigede Catchment Area, IOP Conf. Ser.: Earth Environ. Sci., 118 (2018) 1–6.
  197. G. Munggaran, Y. Hidayat, S.D. Tarigan, D.P.T. Baskoro, Analysis of hydrology response and simulation of soil and water conservation enginerring in upstream Cimanuk Sub Watershed, J. Il. Tan. Lingk., 19 (2017) 26–32.
  198. H. Marhaento, M.J. Booij, T.H.M. Rientjes, A.Y. Hoekstra, Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model, Hydrol. Processes, 31 (2017) 2029–2040.
  199. A.C. Cindy Harifa, M. Sholichin, T.B. Prayogo, Analisa Pengaruh Perubahan Penutupan Lahan Terhadap Debit Sungai Sub Das Metro Dengan Menggunakan Program Arcswat, J. Tenik Pengair., 8 (2017) 1–14.
  200. I. Saifudin, Suripin, Suharyanto, The application of SWAT (Soil and Water Assessment Tool) model to predict the hydrology characteristics garang watershed in Central Java Province, Adv. Sci. Lett., 23 (2017) 2314–2317.
  201. S.S. Putra, S. Soewarno, Mini Sabodam Placement Planning by Sediment Balance Method in The Upstream Area of The Proposed Ciawi Reservoir, Ciliwung, J. Sumber Daya Air., (2017) 83–98, doi: 10.32679/jsda.v13i2.172.
  202. N. Rospriandana, M. Fujii, Assessment of small hydropower potential in the Ciwidey subwatershed, Indonesia: a GIS and hydrological modeling approach, Hydrol. Res. Lett., 11 (2017) 6–11.
  203. D.S. Zuma, K. Murtilaksono, Y. Suharnoto, Analysis of Rainfall and Discharge with SWAT Model Using the Moving Average Method in Ciliwung Hulu Watershed, J. Pengelolaan Sumberd. Alam Dan Lingkung., 7 (2017) 98–106.
  204. Emiyati, E. Kusratmoko, Sobirin, Spatial Pattern of Hydrologic Response Unit (HRU) Effect on Flow Discharge of Ci Rasea Watershed Using Landsat Tm in 1997 To 2009, Int. J. Remote Sens. Earth Sci., 13 (2017) 39, doi: 10.30536/j.ijreses.2016.v13. a2709.
  205. N.A. Sakti, S. Suprayogi, Aplikasi Model Soil And Water Assesment Tool (SWAT) Untuk Mengkaji Debit Harian Dan Limpasan Permukaan, J. Bumi Indones., 5 (2016) 1–9.
  206. E.V. Malicoban, K.M. Arboiz, SWAT Application for Gajahwong River Streamflow Simulation Simulation for Gajahwong River, IOP Conf. Ser.: Earth Environ. Sci., 920 (2021) 1–10.
  207. K. Pudjianto, D. Darusman, B. Nugroho, O. Rusdiana, Characteristics of watershed for determination of critical land management: application of model of soil and water assesment tool in subwatershed Ciseel, Watershed Citanduy, West Java Province, Indonesia, J. Environ. Earth Sci., 6 (2016) 177–188.
  208. D. Sulaeman, Y. Hidayat, L.M. Rachman, S. Darma, Best management practice to reduce flow discharge and sediment yield in Ciujung watershed using SWAT Model, J. Ilmu Tanah Dan Lingkung., 18 (2016) 8–14.
  209. R.D. Yustika, Use of hydrology model in upstream Ciliwung Watershed, Inform. Pertan., 23 (2016) 197, doi: 10.21082/ ip.v23n2.2014.p197-204.
  210. Liyantono, Fajardo, Impact of land use change to dependable flow in Kuncir River, Nganjuk District, East Java, J. Keteknikan Pertan., 5 (2015) 1–6.
  211. E. Junaidi, Utilization of SWAT as a Decision Support Tool In Watershed Management (A Case Study in Cisadane Watershed), J. Tek. Hidraul., 6 (2015) 147–162.
  212. B.D. Supatmanto, S.M. Yusuf, Studi Hidrologi Berdasarkan Climate Changes Menggunakan Model Swat Di Daerah Tangkapan Air Waduk Jatiluhur, J. Sains Teknol. Modif. Cuaca., 16 (2015) 55, doi: 10.29122/jstmc.v16i2.1047.
  213. M. Rau, N. Pandjaitan, A. Sapei, Discharge analysis using SWAT model at Cipasauran Watershed, Banten, J. Keteknikan Pertan., 3 (2015) 1–8.
  214. Emiyati, E. Kusratmoko, Sobirin, The Effect of Hydrologic Response Unit on Ci Rasea Watershed Streamflow Based On LANDSAT TM, Int. J. Remote Sens. Earth Sci., 12 (2015) 97–106.
  215. I. Ridwansyah, H. Pawitan, N. Sinukaban, Y. Hidayat, Watershed modeling with ArcSWAT and SUFI2In Cisadane Catchment Area: calibration and validation to prediction of river flow, Int. J. Sci. Eng., 6 (2014) 12–21.
  216. S. Karim, N.H. Pandjaitan, A. Sapei, Sediment control structures analysis using Soil and Water Assessment Tool model in upper citanduy sub-watershed, West Java, J. Tek. Hidraul., 5 (2014) 125–138.
  217. General BPDAS and Social Forestry Directorate, Guidelines for Identifying Watershed Characteristics, Jakarta, 2013, p. 52.
  218. C.W. Wallace, D.C. Flanagan, B.A. Engel, Evaluating the effects ofwatershed size on SWAT calibration, Water (Switzerland), 10 (2018) 1–27.
  219. M.B. Ercan, J.L. Goodall, A.M. Castronova, M. Humphrey, N. Beekwilder, Calibration of SWAT models using the cloud, Environ. Modell. Software, 62 (2014) 188–196.
  220. V. Pisinaras, C. Petalas, G.D. Gikas, A. Gemitzi, V.A. Tsihrintzis, Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT), Desalination, 250 (2010) 274–286.
  221. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agric. Biol. Eng., 50 (2007) 885–900.
  222. I. Chaubey, A.S. Cotter, T.A. Costello, T.S. Soerens, Effect of DEM data resolution on SWAT output uncertainty, Hydrol. Processes, 19 (2005) 621–628.
  223. P. Zhang, R. Liu, Y. Bao, J. Wang, W. Yu, Z. Shen, Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed, Water Res., 53 (2014) 132–144.
  224. G. Akoko, T.H. Le, T. Gomi, T. Kato, A review of SWAT model application in africa, Water (Switzerland), 13 (2021), doi: 10.3390/w13091313.
  225. P.W. Gassman, J.G. Arnold, R. Srinivasan, M. Reyes, The Worldwide Use of the SWAT Model: Technological Drivers, Networking Impacts, and Simulation Trends, 2010 (2010) 21–24.
  226. M. Samimi, A. Mirchi, D. Moriasi, S. Ahn, S. Alian, S. Taghvaeian, Z. Sheng, Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies, J. Hydrol., 590 (2020) 125418, doi: 10.1016/j.jhydrol.2020.125418.
  227. M. Nyeko, Hydrologic modelling of data scarce basin with SWAT model: capabilities and limitations, Water Resour. Manage., 29 (2015) 81–94.
  228. S.M. Yuningsih, Kondisi Kualitas Data Debit Sungai di Indonesia, J. Sumber Daya Air., 15 (2019) 39–54.
  229. G.W. Kite, A. Pietroniro, Remote sensing applications in hydrological modelling, Hydrol. Sci. J., 41 (1996) 563–591.
  230. A. Cotugno, V. Smith, T. Baker, R. Srinivasan, A framework for calculating peak discharge and flood inundation in ungauged urban watersheds using remotely sensed precipitation data: a case study in Freetown, Sierra Leone, Remote Sens., 13 (2021), doi: 10.3390/rs13193806.
  231. A. Jodar-Abellan, J. Valdes-Abellan, C. Pla, F. Gomariz- Castillo, Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain), Sci. Total Environ., 657 (2019) 1578–1591.
  232. C.G.K. Boongaling, D.V. Faustino-Eslava, F.P. Lansigan, Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: the case of an ungauged catchment in the Philippines, Land Use Policy, 72 (2018) 116–128.
  233. E. Sisay, A. Halefom, D. Khare, L. Singh, T. Worku, Hydrological modelling of ungauged urban watershed using SWAT model, Model. Earth Syst. Environ., 3 (2017) 693–702.
  234. T.J. Schmugge, W.P. Kustas, J.C. Ritchie, T.J. Jackson, A. Rango, Remote sensing in hydrology, Adv. Water Resour., 25 (2002) 1367–1385.
  235. A. Setyorini, D. Khare, S.M. Pingale, Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia, Appl Geomat., 9 (2017) 1–14.