1. D.B. Aulenbach, Water—Our Second Most Important Natural Resource, BC Indus. & Com. L. Rev., 9 (1967) 535.
  2. Y. Yang, X. Zhang, J. Jiang, J. Han, W. Li, X. Li, K.M.Y. Leung, S.A. Snyder, P.J.J. Alvarez, Which micropollutants in water environments deserve more attention globally?, Environ. Sci. Technol., 56 (2021) 13–29.
  3. T.K. Kasonga, M.A.A. Coetzee, I. Kamika, V.M. Ngole- Jeme, M.N.B. Momba, Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review, J. Environ. Manage., 277 (2021) 111485, doi: 10.1016/j.jenvman.2020.111485.
  4. A. Daneshvar, J. Svanfelt, L. Kronberg, G.A. Weyhenmeyer, Winter accumulation of acidic pharmaceuticals in a Swedish river, Environ. Sci. Pollut. Res. Int., 17 (2010) 908–916.
  5. A. Puckowski, K. Mioduszewska, P. Łukaszewicz, M. Borecka, M. Caban, J. Maszkowska, P. Stepnowski, Bioaccumulation and analytics of pharmaceutical residues in the environment: a review, J. Pharm. Biomed. Anal., 127 (2016) 232–255.
  6. L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Diclofenac and its transformation products: environmental occurrence and toxicity - a review, Environ. Int., 96 (2016) 127–138.
  7. P. Higgins, S.H. Siddiqui, R. Kumar, Design of novel graphene oxide/halloysite nanotube@polyaniline nanohybrid for the removal of diclofenac sodium from aqueous solution, Environ. Nanotechnol. Monit. Manage., 17 (2022) 100628, doi: 10.1016/j.enmm.2021.100628.
  8. M. Bizi, Sulfamethoxazole removal from drinking water by activated carbon: kinetics and diffusion process, Molecules, 25 (2020) 4656, doi: 10.3390/molecules25204656.
  9. A. Guellati, R. Maachi, T. Chaabane, A. Darchen, M. Danish, Aluminum dispersed bamboo activated carbon production for effective removal of ciprofloxacin hydrochloride antibiotics: optimization and mechanism study, J. Environ. Manage., 301 (2022) 113765, doi: 10.1016/j.jenvman.2021.113765.
  10. I. Ihsanullah, M.T. Khan, M. Zubair, M. Bilal, M. Sajid, Removal of pharmaceuticals from water using sewage sludgederived biochar: a review, Chemosphere, 289 (2022) 133196, doi: 10.1016/j.chemosphere.2021.133196.
  11. L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Đolić, W. Gernjak, G. Mascolo, D. Fatta-Kassinos, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655 (2019) 986–1008.
  12. T. Gutiérrez-Macías, P. Mijaylova Nacheva, A. Esquivel-Sotelo, L. García-Sánchez, E.B. Estrada-Arriaga, Batch kinetic studies of pharmaceutical compounds removal using activated sludge obtained from a membrane bioreactor, Water Air Soil Pollut., 233 (2022) 36, doi: 10.1007/s11270-022-05508-w.
  13. R.C. Asha, M.P. Yadav, M. Kumar, Sulfamethoxazole removal in membrane photocatalytic reactor system–experimentation and modelling, Environ. Technol., 40 (2018) 1697–1704.
  14. C. Martínez-Sánchez, I. Robles, L.A. Godínez, Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides, Int. J. Environ. Sci. Technol., (2022), doi: 10.1007/s13762-021-03762-9 (in press).
  15. Y.Q. Gao, J.Q. Zhou, Y.Y. Rao, H. Ning, J. Zhang, J. Shi, N.Y. Gao, Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: mechanism, toxicity and DBP formation, Ultrason. Sonochem., 82 (2022) 105906, doi: 10.1016/j.ultsonch.2021.105906.
  16. R. Koklu, M. Imamoglu, Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride, Membr. Water Treat., 13 (2022) 129–137.
  17. M. Imamoglu, Novel determination of copper(II) in natural waters by solid-phase extraction (SPE) flow-injection (FI) flame atomic absorption spectrometry (FAAS), Anal. Lett., (2022), doi: 10.1080/00032719.2022.2092632 (in press).
  18. Ç. Özer, M. İmamoğlu, Removal of ciprofloxacin from aqueous solutions by pumpkin peel biochar prepared using phosphoric acid, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399- 022-02832-3 (in press).
  19. D. Bal, Ç. Özer, M. İmamoğlu, Green and ecofriendly biochar preparation from pumpkin peel and its usage as an adsorbent for methylene blue removal from aqueous solutions, Water Air Soil Pollut., 232 (2021) 1–16.
  20. M. Teker, M. Imamoğlu, Ö. Saltabaş, Adsorption of copper and cadmium lons by activated carbon from rice hulls, Turk. J. Chem., 23 (1999) 185–192.
  21. N. Ozturk, M. Yazar, A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal, Membr. Water Treat., 12 (2021) 11–21.
  22. H. Wei, H. Wang, A. Li, H. Li, D. Cui, M. Dong, J. Lin, J. Fan, J. Zhang, H. Hou, Y. Shi, D. Zhou, Z. Guo, Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors, J. Alloys Compd., 820 (2020) 153111, doi: 10.1016/j.jallcom.2019.153111.
  23. M. Muniyandi, P. Govindaraj, Potential removal of methylene blue dye from synthetic textile effluent using activated carbon derived from palmyra (Palm) shell, Mater. Today:. Proc., 47 (2021) 299–311.
  24. B.R. Abisha, C.I. Anish, R. Beautlin Nisha, N. Daniel Sam, M. Jaya Rajan, Adsorption and equilibrium studies of methyl orange on tamarind shell activated carbon and their characterization, Phosphorus Sulfur, 197 (2022) 225–230.
  25. L. Wu, X. Zhang, Y. Si, Polydopamine functionalized superhydrophilic coconut shells biomass carbon for selective cationic dye methylene blue adsorption, Mater. Chem. Phys., 279 (2022) 125767, doi: 10.1016/j.matchemphys.2022.125767.
  26. E. Dovi, A.A. Aryee, A.N. Kani, F.M. Mpatani, J. Li, L. Qu, R. Han, High-capacity amino-functionalized walnut shell for efficient removal of toxic hexavalent chromium ions in batch and column mode, J. Environ. Chem. Eng., 10 (2022) 107292, doi: 10.1016/j.jece.2022.107292.
  27. M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228 (2008) 108–113.
  28. C. Ozer, M. Imamoglu, Y. Turhan, F. Boysan, Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks, Toxicol. Environ. Chem., 94 (2012) 1283–1293.
  29. C. Duran, D. Ozdes, A. Gundogdu, M. Imamoglu, H.B. Senturk, Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium, Anal. Chim. Acta, 688 (2011) 75–83.
  30. F. Aci, M. Nebioglu, M. Arslan, M. Imamoglu, M. Zengin, M. Kucukislamoglu, Preparation of activated carbon from sugar beet molasses and adsorption of methylene blue, Fresenius Environ. Bull., 17 (2008) 997–1001.
  31. A. Özer, H.B. Pirincci, The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran, J. Hazard. Mater., 137 (2006) 849–855.
  32. D. Hao, Y. Chen, Y. Zhang, N. You, Nanocomposites of zerovalent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines, Chemosphere, 284 (2021) 131342, doi: 10.1016/j.chemosphere.2021.131342.
  33. M. Zhu, F. Li, W. Chen, X. Yin, Z. Yi, S. Zhang, Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling, Environ. Sci. Pollut. Res., 28 (2021) 47354–47366.
  34. B. Zhao, X. Xu, F. Zeng, H. Li, X. Chen, The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics, Environ. Sci. Pollut. Res., 25 (2018) 19423–19435.
  35. D.D. Milenković, P.V. Dašić, V.B. Veljković, Ultrasound-assisted adsorption of copper(II) ions on hazelnut shell activated carbon, Ultrason. Sonochem., 16 (2009) 557–563.
  36. S. Aghagani, H. Baseri, Production of magnetic biochar from the hazelnut shell and magnetite particles for adsorption of Penicillin-G from the contaminated water, Urban Water J., 19 (2022) 422–432.
  37. M. Zabihi, M. Omidvar, A. Motavalizadehkakhky, R. Zhiani, Competitive adsorption of arsenic and mercury on nanomagnetic activated carbons derived from hazelnut shell, Korean J. Chem. Eng., 39 (2022) 367–376.
  38. Y. Wang, B. Jiang, L. Wang, Z. Feng, H. Fan, T. Sun, Hierarchically structured two-dimensional magnetic microporous biochar derived from hazelnut shell toward effective removal of p-arsanilic acid, Appl. Surf. Sci., 540 (2021) 148372, doi: 10.1016/j.apsusc.2020.148372.
  39. D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using Corylus avellana (hazelnut) activated carbon, Br. J. Pharm. Res., 13 (2016) 1–14.
  40. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H.R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150 (2008) 322–327.
  41. W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Technol., 102 (2011) 8247–8252.
  42. S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu, C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: a novel sorbent for removal of Ni(II) ions from aqueous solution, Desal. Water Treat., 50 (2012) 2–13.
  43. ASTM, Standard Test Method for Determination of Iodine Number of Activated Carbon, ASTM Annual Book, 1999.
  44. S. Usanmaz, C. Ozer, M. Imamoglu, Removal of Cu(II), Ni(II) and Co(II) ions from aqueous solutions by hazelnut husks carbon activated with phosphoric acid, Desal. Water Treat., 227 (2021) 300–308.
  45. Schröder, K. Thomauske, C. Weber, A. Hornung, V. Tumiatti, Experiments on the generation of activated carbon from biomass, J. Anal. Appl. Pyrolysis, 79 (2007) 106–111.
  46. J. Rodríguez-Mirasol, T. Cordero, J.J. Rodríguez, Preparation and characterization of activated carbons from eucalyptus kraft lignin, Carbon, 31 (1993) 87–95.
  47. M. Kobya, Adsorption kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon, Adsorpt. Sci. Technol., 22 (2004) 51–64.
  48. S.M. Yakout, G.S. El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arabian J. Chem., 9 (2016) S1155–S1162.
  49. C.E. Brewer, Biochar Characterization and Engineering, Paper 12284, Iowa State University, 2012.
  50. D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki Kinetic and adsorptive characterization of biochar in metal ions removal, Chem. Eng. J., 197 (2012) 295–305.
  51. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1521.
  52. C. Ozer, M. Imamoglu, Adsorptive transfer of methylene blue from aqueous solutions to hazelnut husk carbon activated with potassium carbonate, Desal. Water Treat., 94 (2017) 236–243.
  53. M. Soleimani, T. Kaghazchi, Agricultural waste conversion to activated carbon by chemical activation with phosphoric acid, Chem. Eng. Technol., 30 (2007) 649–654.
  54. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
  55. D.S. Kumar, P.S. Kumar, N.M. Rajendran, G. Anbuganapathi, Compost maturity assessment using physicochemical, solidstate spectroscopy, and plant bioassay analysis, J. Agric. Food Chem., 61 (2013) 11326–11331.
  56. B. Esteves, A. Velez Marques, I. Domingos, H. Pereira, Chemical changes of heat treated pine and eucalypt wood monitored by FTIR, Maderas-Cienc. Tecnol., 15 (2013) 245–258.
  57. M.E. Saleh, A.A. El-Refaey, A.H. Mahmoud, Effectiveness of sunflower seed husk biochar for removing copper ions from wastewater: a comparative study, Soil Water Res., 11 (2016) 53–63.
  58. P. Lv, G. Almeida, P. Perre, TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations, Bioresources, 10 (2015) 4239–4251.
  59. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics isotherm thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  60. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases with special reference to the evaluation of surface area and pore-size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  61. R.F.T. Tiegam, D.R.T. Tchuifon, R. Santagata, P.A.K. Nanssou, S.G. Anagho, I. Ionel, S. Ulgiati, Production of activated carbon from cocoa pods: investigating benefits and environmental impacts through analytical chemistry techniques and life cycle assessment, J. Cleaner Prod., 288 (2021) 125464, doi: 10.1016/j. jclepro.2020.125464.
  62. M.M. Maroto-Valer, I. Dranca, T. Upascu, R. Nastas, Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons, Carbon, 42 (2004) 2655–2659.
  63. B.N. Bhadra, P.W. Seo, S.H. Jhung, Adsorption of diclofenac sodium from water using oxidized activated carbon, Chem. Eng. J., 301 (2016) 27–34.
  64. N. Pamphile, L. Xuejiao, Y. Guangwei, W. Yin, Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption, J. Hazard. Mater., 368 (2019) 602–612.
  65. J. Kong, Y. Zheng, L. Xiao, B. Dai, Y. Meng, Z. Ma, X. Huang, Synthesis and comparison studies of activated carbons based folium cycas for ciprofloxacin adsorption, Colloids Surf., A, 606 (2020) 125519, doi: 10.1016/j.colsurfa.2020.125519.
  66. Ç. Özer, M. İmamoğlu, Isolation of nickel(II) and lead(II) from aqueous solution by sulfuric acid prepared pumpkin peel biochar, Anal. Lett., (2022), doi: 10.1080/00032719.2022.2078981 (in press).
  67. A. Gündoğdu, H.B. Şentürk, C. Duran, M. İmamoğlu, M. Soylak, A new low-cost activated carbon produced from tea-industry waste for removal of Cu(II) ions from aqueous solution: equilibrium, kinetic and thermodynamic evaluation, Karadeniz Chem. Sci. Technol., 2 (2018) 1–10.
  68. X. Liu, S. Lu, Y. Liu, W. Meng, B. Zheng, Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism, RSC Adv., 7 (2017) 50449–50458.
  69. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kongl. Vetensk. Acad. Handl., 24 (1898) 1–39.
  70. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  71. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  72. M. Antunes, V.I. Esteves, R. Guégan, J.S. Crespo, A.N. Fernandes, M. Giovanela, Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse, Chem. Eng. J., 192 (2012) 114–121.
  73. A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, D. Ozdes, H. Serencam, M. Imamoglu, Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study, J. Chem. Eng. Data, 57 (2012) 2733–2743.
  74. G. Karaçetin, S. Sivrikaya, M. Imamoglu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis, 110 (2014) 270–276.
  75. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim. USSR, 12 (1940) 217–222.
  76. M.M. Dubinin, L.V. Radushkevich, Evaluation of microporous materials with a new isotherm, In Dokl. Akad. Nauk., SSSR, 55 (1947) 331–334.
  77. Z. Shirani, C. Santhosh, J. Iqbal, A. Bhatnagar, Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants, J. Environ. Manage., 227 (2018) 95–106.
  78. T. Li, X. Han, C. Liang, M.J.I. Shohag, X. Yang, Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag, Environ. Technol., 36 (2015) 245–253.
  79. M.D.G. De Luna, W. Budianta, K.K.P. Rivera, R.O. Arazo, Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks, J. Environ. Chem. Eng., 5 (2017) 1465–1474.
  80. S.A. Torrellas, R.G. Lovera, N. Escalona, C. Sepulveda, J.L. Sotelo, J. Garcia, Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions, Chem. Eng. J., 279 (2015) 788–798.
  81. L. Wang, G. Chen, C. Ling, J. Zhang, K. Szerlag, Adsorption of ciprofloxacin on to bamboo charcoal: effects of pH, salinity, cations, and phosphate, Environ. Prog. Sustainable Energy, 36 (2017) 1108–1115.
  82. E.S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  83. J. Li, G. Yu, L. Pan, C. Li, F. You, S. Xie, Y. Wang, J. Ma, X. Shang, Study of ciprofloxacin removal by biochar obtained from used tea leaves, J. Environ. Sci., 73 (2018) 20–30.
  84. M.E. Penafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteoö, M.P. Ormad, Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon, Sci. Total Environ., 750 (2021) 141498, doi: 10.1016/j.scitotenv.2020.141498.
  85. C. Afonso-Olivares, C. Fernández-Rodríguez, R.J. Ojeda- González, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, J.D. Rodríguez, Estimation of kinetic parameters and UV doses necessary to remove twenty-three pharmaceuticals from pre-treated urban wastewater by UV/H2O2, J. Photochem. Photobiol., A, 329 (2016) 130–138.
  86. S. Beier, S. Köster, K. Veltmann, H. Schröder, J. Pinnekamp, Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis, Water Sci. Technol., 61 (2010) 1691–1698.
  87. A. Aguinaco, F.J. Beltrán, J.F. García-Araya, A. Oropesa, Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables, Chem. Eng. J., 189 (2012) 275–282.
  88. P. Bhattacharya, D. Mukherjee, S. Dey, S. Ghosh, S. Banerjee, Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal, Mater. Chem. Phys., 229 (2019) 106–116.
  89. I. Firdaus, A. Yaqub, H. Ajab, I. Khan, B.A.Z. Amin, A. Baig, M.H. Isa, Electrochemical oxidation of amoxicillin, ciprofloxacin and erythromycin in water: effect of experimental factors on COD removal, Pak. J. Pharm. Sci., 34 (2021) 119–128.
  90. N. Shahmahdi, R. Dehghanzadeh, H. Aslani, S.B. Shokouhi, Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant, Chem. Eng. J., 383 (2020) 123093, doi: 10.1016/j. cej.2019.123093.
  91. M.C. Tonucci, L.V.A. Gurgel, S.F. de Aquino, Activated carbons from agricultural by-products (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: kinetic and thermodynamic studies, Ind. Crops Prod., 74 (2015) 111–121.