References

  1. T. Liu, Y. Lawluvy, Y. Shi, J.O. Ighalo, Y. He, Y. Zhang, P.-S. Yap, Adsorption of cadmium and lead from aqueous solution using modified biochar: a review, J. Environ. Chem. Eng., 10 (2022) 106502, doi: 10.1016/j.jece.2021.106502.
  2. J. Geng, Y. Yin, Q. Liang, Z. Zhu, H. Luo, Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: adsorption performance and mechanism, Chem. Eng. J., 361 (2019) 1497–1510.
  3. M.A. Hashem, M. Hasan, M.A. Momen, S. Payel, M.S. Nur-A-Tomal, Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater, Environ. Sustainability Indic., 5 (2020) 100022, doi: 10.1016/j.indic.2020.100022.
  4. Q. Shi, G.E. Sterbinsky, V. Prigiobbe, X. Meng, Mechanistic study of lead adsorption on activated carbon, Langmuir, 34 (2018) 13565–13573.
  5. P. Staroń, J. Chwastowski, Raphia-microorganism composite biosorbent for lead ion removal from aqueous solutions, Materials (Basel), 14 (2021) 7482, doi: doi: 10.3390/ma14237482.
  6. P. Loganathan, S. Vigneswaran, J. Kandasamy, R. Naidu, Cadmium sorption and desorption in soils: a review, Crit. Rev. Env. Sci. Technol., 42 (2012) 489–533.
  7. M. Irani, M. Amjadi, M.A. Mousavian, Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chem. Eng. J., 178 (2011) 317–323.
  8. J.A. Laszlo, F.R. Dintzis, Crop resides as lon-exchange materials treatment of soybean hull and sugar beet fiber (pulp) with epichlorohydrin to improve cation-exchange capacity and physical stability, J. Appl. Polym. Sci., 52 (1994) 531–538.
  9. N.A.A. Babarinde, J.O. Babalola, R.A. Sanni, Biosorption of lead ions from aqueous solution by maize leaf, Int. J. Phys. Sci., 1 (2006) 23–26.
  10. V.S. Grinev, A.A. Shirokov, N.A. Navolokin, N.V. Polukonova, M.N. Kurchatova, N.A. Durnova, A.B. Bucharskaya, G.N. Maslyakova, Polyphenolic compounds of a new biologically active extract from immortelle sandy flowers (Helichrysum arenarium (L) Moench), Russ. J. Bioorg. Chem., 42 (2016) 770–776.
  11. B.S. Marques, T.S. Frantz, T.R. Sant’Anna Cadaval Junior, L.A. de Almeida Pinto, G.L. Dotto, Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents, Environ. Sci. Pollut. Res., 26 (2019) 28584–28592.
  12. J.L. Marques, S.F. Lütke, T.S. Frantz, J.B.S. Espinelli, R. Carapelli, L.A.A. Pinto, T.R.S. Cadaval, Removal of Al(III) and Fe(III) from binary system and industrial effluent using chitosan films, Int. J. Biol. Macromol., 120 (2018) 1667–1673.
  13. F.C. Wu, R.L. Tseng, R.S. Juang, A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals, J. Environ. Manage., 91 (2010) 798–806.
  14. P. Baláž, A. Aláčová, J. Briančin, Sensitivity of Freundlich equation constant 1/n for zinc sorption on changes induced in calcite by mechanical activation, Chem. Eng. J., 114 (2005) 115–121.
  15. S.M. Mousa, N.S. Ammar, H.A. Ibrahim, Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste, J. Saudi Chem. Soc., 20 (2016) 357–365.
  16. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  17. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  18. C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  19. K.V. Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon, J. Hazard. Mater., 137 (2006) 1538–1544.
  20. J. López-Luna, L.E. Ramírez-Montes, S. Martinez-Vargas, A.I. Martínez, O.F. Mijangos-Ricardez,
    M. del Carmen A. González-Chávez, R. Carrillo-González, F.A. Solís-Domínguez, M. del Carmen Cuevas-Díaz,
    V. Vázquez-Hip, Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles, SN Appl. Sci., 1 (2019) 1–19.
  21. S. Svilović, D. Rušić, A. Bašić, Investigations of different kinetic models of copper ions sorption on zeolite 13X, Desalination, 259 (2010) 71–75.
  22. M.N. Prabhakar, A.U.R. Shah, K.C. Rao, J.-I. Song, Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler, Fibers Polym., 16 (2015) 1119–1124.
  23. L. Marcotte, G. Kegelaer, C. Sandt, J. Barbeau, M. Lafleur, An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples, Anal. Biochem., 361 (2007) 7–14.
  24. M. Ahsan Habib, S.P. Maheswari, Electrochromism of polyaniline: an in situ FTIR study, J. Electrochem. Soc., 136 (1989) 1050, doi: 10.1149/1.2096782.
  25. D. Bhaduri, A. Saha, D. Desai, H.N. Meena, Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study, Chemosphere, 148 (2016) 86–98.
  26. V.P. Singh, R. Vaish, Adsorption of dyes onto candle soot: equilibrium, kinetics and thermodynamics, Eur. Phys. J. Plus, 133 (2018) 446, doi: 10.1140/epjp/i2018-12212-x.
  27. R.M.D. Soares, A.M.F. Lima, R.V.B. Oliveira, A.T.N. Pires, V. Soldi, Thermal degradation of biodegradable edible films based on xanthan and starches from different sources, Polym. Degrad. Stab., 90 (2005) 449–454.
  28. P. Manoj Kumar Reddy, S. Mahammadunnisa, B. Ramaraju, B. Sreedhar, C. Subrahmanyam, Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution, Environ. Sci. Pollut. Res., 20 (2013) 4111–4124.
  29. Ş. Taşar, F. Kaya, A. Özer, Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies, J. Environ. Chem. Eng., 2 (2014) 1018–1026.
  30. M.A. Wahab, H. Boubakri, S. Jellali, N. Jedidi, Characterization of ammonium retention processes onto Cactus leaves fibers using FTIR, EDX and SEM analysis, J. Hazard. Mater., 241–242 (2012) 101–109.
  31. A. Cherdoud-Chihani, M. Mouzali, M.J.M. Abadie, Study of crosslinking acid copolymer/DGEBA systems by FTIR, J. Appl. Polym. Sci., 87 (2003) 2033–2051.
  32. O. Abbas, C. Rebufa, N. Dupuy, J. Kister, FTIR—multivariate curve resolution monitoring of photo-Fenton degradation of phenolic aqueous solutions: comparison with HPLC as a reference method, Talanta, 77 (2008) 200–209.
  33. S. Gunasekaran, R.K. Natarajan, V. Renganayaki, S. Natarajan, Vibrational spectra and thermodynamic analysis of metformin, Indian J. Pure Appl. Phys., 44 (2006) 495–500.
  34. F.A.A. Al-Rub, M. El-Naas, F. Benyahia, I. Ashour, Biosorption of nickel on blank alginate beads, free and immobilized algal cells, Process Biochem., 39 (2004) 1767–1773.
  35. H.N. Tran, H.P. Chao, Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process, Environ. Sci. Pollut. Res., 25 (2018) 12808–12820.
  36. C. Zhou, X. Gong, W. Zhang, J. Han, R. Guo, A. Zhu, Uptake of Cd(II) onto raw crab shells: isotherm, kinetic, adsorption properties and mechanisms, Water Environ. Res., 89 (2017) 817–826.
  37. D. Alidoust, M. Kawahigashi, S. Yoshizawa, H. Sumida, M. Watanabe, Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, J. Environ. Manage., 150 (2015) 103–110.
  38. J.B. Dulla, B. Sumalatha, V.N. Alugunulla, T. Venkateswarulu, Ultrasonic treated dried turmeric leaves powder as biosorbent for enhanced removal of lead from aqueous solutions, Int. J. Environ. Anal. Chem., (2022), doi: 10.1080/03067319.2022.2089566.
  39. E. Heraldy, W.W. Lestari, D. Permatasari, D.D. Arimurti, Biosorbent from tomato waste and apple juice residue for lead removal, J. Environ. Chem. Eng., 6 (2018) 1201–1208.
  40. S. Latif, R. Rehman, M. Imran, M.S. Hussain, S. Iqbal, L. Mitu, Removal of Cadmium(II) and lead(II) from water by chemically treated citrullus lanatus peels as biosorbent in cost effective way, Rev. Chim., 71 (2020) 182–192.
  41. T.-H. Mu, H.-N. Sun, Polyphenols in Plants, Sweet Potato Leaf Polyphenols: Preparation, Individual Phenolic Compound Composition and Antioxidant Activity, Elsevier, 2019, pp. 365–380.
  42. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280 (2004) 309–314.
  43. F.T. Akinhanmi, A.I. Adeogun, A. Adegbuyi, Removal of Cu2+ from aqueous solution by adsorption onto quail eggshell: kinetic and isothermal studies, J. Environ. Biotechnol. Res., 5 (2016) 1–9.
  44. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq., 202 (2015) 165–175.
  45. Z. Huang, S. Liu, B. Zhang, L. Xu, X. Hu, Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous phase using a β-cyclodextrin-based adsorbent, Carbohydr. Polym., 88 (2012) 609–617.
  46. K. Kawai, A. Hayashi, H. Kikuchi, S. Yokoyama, Desorption properties of heavy metals from cement hydrates in various chloride solutions, Constr. Build. Mater., 67 (2014) 55–60.