1. C. Zaharia, D. Suteu, Organic Pollutants Ten Years After the Stockholm Convention – Environmental and Analytical Update, T. Puzyn, A. Mostrage-Szlichtyng, Eds., InTechOpen, Rijeka, Croatia, 2012.
  2. Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj, Decolourization of industrial effluents – available methods and emerging technologies – a review, Rev. Environ. Sci. Biotechnol., 4 (2005) 245–273.
  3. C. Zaharia, D. Suteu, Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency, Environ. Sci. Pollut. Res., 20 (2012), doi: 10. 1007/s11356-012-065-z.
  4. C. Zaharia, Environmental Legislation, Politehnium Publishing House, Iasi, Romania, 2008.
  5. A. Latif, S. Noor, Q.M. Sharif, M. Najeebullah, Different techniques recently used for the treatment of textile dyeing effluents: a review, J. Chem. Soc. Pak., 32 (2010) 115–124.
  6. D. Suteu, C. Zaharia, A. Muresan, R. Muresan, A. Popescu, Using of industrial waste materials for textile wastewater treatment, Environ. Eng. Manage. J., 8 (2009) 1097–1102.
  7. Y. Han, W. Zhang, X. Kan, L. Dong, Z. Jiang, H.J. Li, H. Yang, R. Cheng, Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption, Colloids Surf., A, 380 (2011) 143–151.
  8. M.A. Ubbe, K.R. Beck, W.G. O'Neal, Y.Ch. Sharma, Cellulosic substrates for removal pollutants from aqueous system: a review. 2. Dyes, BioResources, 7 (2012) 2592–2687.
  9. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
  10. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  11. R.M. Bozlur, S. Shibata, C.F. Diba, M. Uono, Low cost biodegradable adsorbent material for the removal of dissolved dyes from aqueous solutions: an economical process, Int. J. Eng. Technol., 2 (2012) 468–473.
  12. I. Enayatollahi, A.A. Bazzazi, A. Asadi, Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines, Rock Mech. Rock Eng., 47 (2014) 799–807.
  13. I. Chairez, I. García-Peña, A. Cabrera, Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network, J. Process Control, 19 (2009) 1103–1110.
  14. S. Yildiz, M. Değirmenci, Estimation of oxygen exchange during treatment sludge composting through multiple regression and artificial neural networks (estimation of oxygen exchange during composting), Int. J. Environ. Res., 9 (2015) 1173–1182.