1. I. Xagoraraki, D. Kuo, Water Pollution: Emerging Contaminants Associated With Drinking Water,
    H.K. (Kris) Heggenhougen, Ed., International Encyclopedia of Public Health, Academic Press, Elsevier, USA, 2008, pp. 539–550. doi: 10.1016/B978-012373960-5.00292-6
  2. S. Alsherbeny, T.S. Jamil, S.A.M. El-Sawi, F.I. Eissa, Low-cost corn cob biochar for pesticides removal from water, Egypt. J. Chem., 65 (2022) 639–650.
  3. T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, A. Ahmad, Removal of pesticides from water and wastewater by different adsorbents: a review, J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev., 28 (2010) 231–271.
  4. K. Aziz, F. Aziz, R. Mamouni, L. Aziz, N. Saffaj, Engineering of highly Brachychiton populneus shells@polyaniline biosorbent for efficient removal of pesticides from wastewater: optimization using BBD-RSM approach, J. Mol. Liq., 346 (2022) 117092, doi: 10.1016/j.molliq.2021.117092.
  5. T. Rasheed, S. Shafi, M. Bilal, T. Hussain, F. Sher, K. Rizwan, Surfactants-based remediation as an effective approach for removal of environmental pollutants—a review, J. Mol. Liq., 318 (2020) 113960, doi: 10.1016/j.molliq.2020.113960.
  6. S.G. Mohammad, S.M. Ahmed, Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media, Int. J. Ind. Chem., 8 (2017) 121–132.
  7. S.G. Mohammad, S.M. Ahmed, A.F.M. Badawi, A comparative adsorption study with different agricultural waste adsorbents for removal of oxamyl pesticide, Desal. Water Treat., 55 (2015) 2109–2120.
  8. H. Li, F. Wang, J. Li, S. Deng, S. Zhang, Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular dynamics simulation, Chemosphere, 264 (2021) 128556, doi: 10.1016/j.chemosphere.2020.128556.
  9. X. Shi, C. Cheng, F. Peng, W. Hou, X. Lin, X. Wang, Adsorption properties of graphene materials for pesticides: structure effect, J. Mol. Liq., 364 (2022) 119967, doi: 10.1016/j. molliq.2022.119967.
  10. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  11. M. Qiu, L. Liu, Q. Ling, Y. Cai, S. Yu, S. Wang, D. Fu, B. Hu, X. Wang, Biochar for the removal of contaminants from soil and water: a review, Biochar, 4 (2022) 1–25.
  12. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
  13. R. Baetan, I. Oltean, A. Rocco, P. Francesco, Application of low-cost adsorbents for pesticide removal, Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric., 72 (2015), doi: 10.15835/buasvmcn-agr:10619.
  14. N.K. Daud, U.G. Akpan, B.H. Hameed, Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study, Desal. Water Treat., 37 (2012) 1–7.
  15. A. Mojiri, R.A. Kazeroon, A. Gholami, Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: optimization by the artificial neural network, Water (Switzerland), 11 (2019) 1–18.
  16. A. Jusoh, S.S. Lam, W.J.H. Hartini, N. Ali, Removal of pesticide in agricultural runoff using granular-activated carbon: a simulation study using a fixed-bed column approach, Desal. Water Treat., 52 (2014) 861–866.
  17. K. Ohno, T. Minami, Y. Matsui, Y. Magara, Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation, Water Res., 42 (2008) 1753–1759.
  18. Y. Wang, C. Lin, X. Liu, W. Ren, X. Huang, M. He, W. Ouyang, Efficient removal of acetochlor pesticide from water using magnetic activated carbon: adsorption performance, mechanism, and regeneration exploration, Sci. Total Environ., 778 (2021) 146353, doi: 10.1016/j.scitotenv.2021.146353.
  19. Y. Wang, S. Ling Wang, T. Xie, J. Cao, Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant, Bioresour. Technol., 316 (2020) 123929, doi: 10.1016/j.biortech.2020.123929.
  20. B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  21. J. Růžičková, H. Raclavská, M. Šafář, M. Kucbel, K. Raclavský, A. Grobelak, B. Švédová, D. Juchelková, The occurrence of pesticides and their residues in char produced by the combustion of wood pellets in domestic boilers, Fuel, 293 (2021, doi: 10.1016/j.fuel.2021.120452.
  22. J.M. Salman, Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution, Arabian J. Chem., 7 (2014) 101–108.
  23. W.E. Ndifreke, N. Pasaoglulari Aydinlik, KOH modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution, J. Environ. Sci. Health., Part B, 54 (2019) 1–13.
  24. T. Kopac, Y. Kırca, A. Toprak, Synthesis and characterization of KOH/boron modified activated carbons from coal and their hydrogen sorption characteristics, Int. J. Hydrogen Energy, 42 (2017) 23606–23616.
  25. E. Ayranci, N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth, Chemosphere, 60 (2005) 1600–1607.
  26. V.O. Njoku, B.H. Hameed, Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption, Chem. Eng. J., 173 (2011) 391–399.