References

  1. M. Bartolomeu, M.G.P.M.S. Neves, M.A.F. Faustino, A. Almeida, Wastewater chemical contaminants: remediation by advanced oxidation processes, Photochem. Photobiol. Sci., 17 (2018) 1573–1598.
  2. B.H. Diya’Uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents: a review, Process Saf. Environ. Prot., 9 (2011) 95–105.
  3. J. de J. Treviño-Reséndez, A. Medel, Y. Meas, Electrochemical technologies for treating petroleum industry wastewater, Curr. Opin. Electrochem., 27 (2021) 100690, doi: 10.1016/j. coelec.2021.100690.
  4. S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents — a review, Process Saf. Environ. Prot., 113 (2018) 48–67.
  5. C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation of organic pollutants for wastewater treatment, Curr. Opin. Electrochem., 11 (2018) 62–71.
  6. O. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre, Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from labto full-scale, Crit. Rev. Env. Sci. Technol., 52 (2020) 240–309.
  7. P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part I. general description and application to inactive electrodes, Ind. Eng. Chem. Res., 43 (2004) 1915–1922.
  8. P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part II. application to active electrodes, Ind. Eng. Chem. Res., 43 (2004) 1923–1931.
  9. A.M. Polcaro, M. Mascia, S. Palmas, A. Vacca, Kinetic study on the removal of organic pollutants by an electrochemical oxidation process, Ind. Eng. Chem. Res., 41 (2002) 2874–2881.
  10. O. Scialdone, A. Galia, S. Randazzo, Electrochemical treatment of aqueous solutions containing one or many organic pollutants at boron doped diamond anodes. Theoretical modeling and experimental data, Chem. Eng. J., 183 (2012) 124–134.
  11. P. Trinidad, C. Ponce de León, F.C. Walsh, The application of flow dispersion models to the FM01-LC laboratory filter-press reactor, Electrochim. Acta, 52 (2006) 604–613.
  12. P. Mavros, Technical note validity and limitations of the closed-vessel analytical solution to the axial dispersion model, Miner. Eng., 5:9 (1992) 1053–1060.
  13. F.F. Rivera, M.R. Cruz-Díaz, E.P. Rivero, I. González, Analysis and interpretation of residence time distribution experimental curves in FM01-LC reactor using axial dispersion and plug dispersion exchange models with closed–closed boundary conditions, Electrochim. Acta, 56 (2010) 361–371.
  14. G. Rodríguez, F.Z. Sierra-Espinosa, J. Teloxa, A. Álvarez, J.A. Hernández, Hydrodynamic design of electrochemical reactors based on computational fluid dynamics, Desal. Water Treat., 57 (2015) 22968–22979.
  15. L. Castañeda, R. Antaño, F.F. Rivera, J.L. Nava, Computational fluid dynamic simulations of single-phase flow in a spacerfilled channel of a filter-press electrolyzer, Int. J. Electrochem. Sci., 12 (2017) 7351–7364.
  16. D.P. Ghumra, C. Agarkoti, P.R. Gogate, Improvements in effluent treatment technologies in common effluent treatment plants (CETPs): review and recent advances, Process Saf. Environ. Prot., 147 (2021) 1018–1051.
  17. J.L. Nava, C. Ponce de León, Reactor Design for Advanced Oxidation Processes, Handbook of Environmental Chemistry, 61, Springer, Singapore, 2018, pp. 263–286.
  18. J. Radjenovic, D.L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water, Environ. Sci. Technol., 49 (2015) 11292–11302.
  19. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  20. N. Wachter, N. Bocchi, R.C. Rocha-Filho, Use of a turbulence promoter in an electrochemical filter-press reactor: consolidated evidence of significant enhancement of organics mass transport and degradation rates, Sep. Purif. Technol., 276 (2021) 119292, doi: 10.1016/j.seppur.2021.119292.
  21. A. Kapałka, G. Fóti, C. Comninellis, Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment, J. Appl. Electrochem., 38 (2008) 7–16.
  22. C.A. Martínez-Huitle, L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances, Quim. Nova, 34 (2011) 850–858.
  23. M. Rueffer, D. Bejan, N.J. Bunce, Graphite: an active or an inactive anode?, Electrochim. Acta, 56 (2011) 2246–2253.
  24. O. Scialdone, Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface, Electrochim. Acta, 54 (2009) 6140–6147.
  25. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review, Chem. Rev., 115 (2015) 13362–13407.
  26. T. Zier, S. Bouafia-Chergui, M. Chabani, Anodic oxidation of synthetic refinery effluent on lead anode: mass transport and charge rate balance, Water Sci. Technol., 84 (2021) 2422–2431.
  27. P. Trinidad F.C. Walsh, Hydrodynamic behaviour of the FM01-LC reactor, Electrochim. Acta, 41 (1996) 493–502.
  28. M. Griffiths, C.P. De León, F.C. Walsh, Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor), AlChE J., 51 (2005) 682–687.
  29. I. El Gheriany, M.H. Abdel-Aziz, E.S.Z. El-Ashtoukhy, G.H. Sedahmed, Electrochemical removal of urea from wastewater by anodic oxidation using a new cell design: an experimental and modeling study, Process Saf. Environ. Prot., 159 (2022) 133–145.
  30. J.A. Yàñez-Varela, V.X. Mendoza-Escamilla, A. Alonzo-Garcia, S.A. Martinez-Delgadillo, I. Gonzalez-Neria, C. Gutiérrez-Torres, CFD and experimental validation of an electrochemical reactor electrode design for Cr(VI) removal, Chem. Eng. J., 349 (2018) 119–128.
  31. J.E. Lira-Teco, F. Rivera, O. Farías-Moguel, J. Torres-González, Y. Reyes, R. Antaño-López, G. Orozco,
    F. Castañeda-Zaldivar, Comparison of experimental and CFD mass transfer coefficient of three commercial turbulence promoters, Fuel, 167 (2016) 337–346.
  32. N.D. Muazu, N. Jarrah, A. Bukhari, Kinetic modeling of electrochemical oxidation of phenol on boron-doped diamond anode in the presence of some inorganic species, Desal. Water Treat., 56 (2015) 3005–3012.
  33. A.N. Ghanim, Perspectives of electrochemical oxidation parameters in PRW treatment, Int. J. Environ. Waste Manage., 26 (2020) 349–361.
  34. K. Scott, J. Lobato, Determination of a mass-transfer coefficient using the limiting-current technique, Chem. Educ., 7 (2022) 214–219.