References

  1. M. Azizur Rahman, H. Hasegawa, Aquatic arsenic: phytoremediation using floating macrophytes, Chemosphere, 83 (2011) 633–646.
  2. H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals—concepts and applications, Chemosphere, 91 (2013) 869–881.
  3. H. Xiao, A. Shahab, B. Xi, Q. Chang, S. You, J. Li, X. Sun, H. Huang, X. Li, Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China, Environ. Pollut., 269 (2021) 116189, doi: 10.1016/j.envpol.2020.116189.
  4. M. Wieczorek-Dąbrowska, A. Tomza-Marciniak, B. Pilarczyk, A. Balicka-Ramisz, Roe and red deer as bioindicators of heavy metals contamination in north-western Poland, Chem. Ecol., 29 (2013) 100–110.
  5. J.E. Gall, R.S. Boyd, N. Rajakaruna, Transfer of heavy metals through terrestrial food webs: a review, Environ. Monit. Assess., 187 (2015) 201, doi: 10.1007/s10661-015-4436-3.
  6. C. Zhu, H. Tian, K. Cheng, K. Liu, K. Wang, S. Hua, J. Zhou, Potentials of whole process control of heavy metals emissions from coal-fired power plants in China, J. Cleaner Prod., 114 (2016) 343–351.
  7. H.S. Helmisaari, M. Salemaa, J. Derome, O. Kiikkilä, C. Uhlig, T. Nieminen, Remediation of heavy metal–contaminated forest soil using recycled organic matter and native woody plants, J. Environ. Qual., 36 (2007) 1145–1153.
  8. A. Mahar, P. Wang, A. Ali, M.K. Awasthi, A.H. Lahori, Q. Wang, Z. Zhang, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf., 126 (2016) 111–121.
  9. M.M. Lasat, Phytoextraction of toxic metals: a review of biological mechanisms, J. Environ. Qual., 31 (2002) 109–120.
  10. S. Sharma, B. Singh, V. Manchanda, Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water, Environ. Sci. Pollut. Res., 22 (2015) 946–962.
  11. M.A. Maine, N. Sune, H. Hadad, G. Sanchez, C. Bonetto, Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry, Ecol. Eng., 26 (2006) 341–347.
  12. Å. Fritioff, M. Greger, Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater, Int. J. Phytorem., 5 (2003) 211–224.
  13. T.M. Galal, E.M. Eid, M.A. Dakhil, L.M. Hassan, Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands, Int. J. Phytorem., 20 (2018) 440–447.
  14. P. Mays, G. Edwards, Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecol. Eng., 16 (2001) 487–500.
  15. E. Stoltz, M. Greger, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot., 47 (2002) 271–280.
  16. M. Said, L. Cassayre, J.L. Dirion, A. Nzihou, X. Joulia, Behavior of heavy metals during gasification of phytoextraction plants: thermochemical modelling computer aided, Chem. Eng., 37 (2015) 341–346.
  17. G. Bonanno, J.A. Borg, V. Di Martino, Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment, Sci. Total Environ., 576 (2017) 796–806.
  18. S. Bravo, J.A. Amorós, C. Pérez-de-los-Reyes, F.J. García, M.M. Moreno, M. Sánchez-Ormeño, P. Higueras, Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain), J. Geochem. Explor., 174 (2017) 79–83.
  19. M.A.O. Leguizamo, W.D.F. Gómez, M.C.G. Sarmiento, Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - a review, Chemosphere, 168 (2017) 1230–1247.
  20. M. Daud, S. Ali, Z. Abbas, I.E. Zaheer, M.A. Riaz, A. Malik, S.J. Zhu, Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate, J. Chem., 2018 (2018) 1–9.
  21. S. Nakphet, R.J. Ritchie, S. Kiriratnikom, Aquatic plants for bioremediation in red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) recirculating aquaculture, Aquacult. Int., 25 (2017) 619–633.
  22. S. Dahija, R. Bešta-Gajević, A. Jerković-Mujkić, S. Đug, E. Muratović, Utilization of Mentha aquatica L. for removal of Faecal pathogens and heavy metals from water of Bosna river, Bosnia and Herzegovina, Int. J. Phytorem., 21 (2019) 807–815.
  23. R. Hasanpour, F. Zaefarian, M. Rezvani, B. Jalili, Potential of Mentha aquatica L., Eryngium caucasicum Trautv. and Froriepia subpinnata Ledeb. for phytoremediation of Cd-contaminated soil, Braz. J. Biol., 42 (2019) 399–406.
  24. A. Samecka-Cymerman, A.J. Kempers, Bioindication of heavy metals with aquatic macrophytes: the case of a stream polluted with power plant sewages in Poland, J. Toxicol. Environ. Health A, 62 (2000) 57–67.
  25. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington D.C., 2005.
  26. S. Ladislas, C. Gerente, F. Chazarenc, J. Brisson, Y. Andres, Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff, Water Air Soil Pollut., 224 (2013) 1408, doi: 10.1007/s11270-012-1408-x.
  27. C.M.A. Ademoroti, Standard Methods for Water and Effluents Analysis, Vol. 3, Foludex Press Ltd., Ibadan, 1996, pp. 29–118.
  28. A.Q. Fayiga, L.Q. Ma, Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata, Sci. Total Environ., 359 (2006) 17–25.
  29. C.E. Enyoh, A.W. Verla, N.J. Egejuru, pH variations and chemometric assessment of borehole water in Orji, Owerri Imo State, Nigeria, J. Environ. Anal. Chem., 5 (2018) 1–9.
  30. O.B. Akpor, M. Muchie, Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications, Phys. Sci. Int. J., 5 (2010) 1807–1817.
  31. E.M. Eid, T.M. Galal, N.A. Sewelam, N.I. Talha, S.M. Abdallah, Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment, Environ. Sci. Pollut. Res., 27 (2020) 12138–12151.
  32. K.K. Yadav, N. Gupta, A. Kumar, L.M. Reece, N. Singh, S. Rezania, S.A. Khan, Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects, Ecol. Eng., 120 (2018) 274–298.
  33. F.V. de Campos, J.A. de Oliveira, A.A. da Silva, C. Ribeiro, F. dos Santos Farnese, Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool?, Ecol. Indic., 104 (2019) 794–801.
  34. G. De Stefani, D. Tocchetto, M. Salvato, M. Borin, Performance of a floating treatment wetland for in-stream water amelioration in NE Italy, Hydrobiologia, 674 (2011) 157–167.
  35. P. Saha, O. Shinde, S. Sarkar, Phytoremediation of industrial mines wastewater using water hyacinth, Int. J. Phytorem., 19 (2017) 87–96.
  36. G. Cimino, A. Passerini, G. Toscano, Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell, Water Res., 34 (2000) 2955–2962.
  37. S. Saygideger, O. Gulnaz, E.S. Istifli, N. Yucel, Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment, J. Hazard. Mater., 126 (2005) 96–104.
  38. A.R. Iftikhar, H.N. Bhatti, M.A. Hanif, R. Nadeem, Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass, J. Hazard. Mater., 161 (2009) 941–947.
  39. H.M. Mustafa, G. Hayder, Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: a review article, Ain Shams Eng. J., 12 (2021) 355–365.
  40. J.J. Elser, M.E. Bracken, E.E. Cleland, D.S. Gruner, W.S. Harpole, H. Hillebrand, J.T. Ngai, E.W. Seabloom, J.B. Shurin, J.E. Smith, Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10 (2007) 1135–1142.
  41. G.B. Douglas, M. Lurling, B.M. Spears, Assessment of changes in potential nutrient limitation in an impounded river after application of lanthanum-modified bentonite, Water Res., 97 (2016) 47–54.
  42. N. Ran, M. Agami, G. Oron, A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel, Water Res., 38 (2004) 2240–2247.
  43. S.A. El-Shafai, F.A. El-Gohary, F.A. Naser, P.V.D. Steen, H.J. Gijzen, Nitrogen recovery in an integrated system for wastewater treatment and tilapia production, Environmentalist, 27 (2007) 287–302.
  44. H. Wu, J. Zhang, P. Li, J. Zhang, H. Xie, B. Zhang, Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China, Ecol. Eng., 37 (2011) 560–568.
  45. J.C. Finlay, G.E. Small, R.W. Sterner, Human influences on nitrogen removal in lakes, Science, 342 (2013) 247–250.
  46. D.O. Huett, S.G. Morris, G. Smith, N. Hunt, Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands, Water Res., 39 (2005) 3259–3272.
  47. M.W. Beutel, C.D. Newton, E.S. Brouillard, R.J. Watts, Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington, Ecol. Eng., 35 (2009) 1538–1546.
  48. S. Yu, C. Miao, H. Song, Y. Huang, W. Chen, X. He, Efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water, Int. J. Phytorem., 21 (2019) 643–651.
  49. J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 380 (2007) 48–65.
  50. B.O.L. Demars, A.C. Edwards, Tissue nutrient concentrations in aquatic macrophytes: comparison across biophysical zones, surface water habitats and plant life forms, Chem. Ecol., 24 (2008) 413–422.
  51. R. Zurayk, B. Sukkariyah, R. Baalbaki, Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution, Water Air Soil Pollut., 127 (2001) 373–388.
  52. R. Zurayk, B. Sukkariyah, R. Baalbaki, D.A. Ghanem, Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L., Water Air Soil Pollut., 139 (2002) 355–364.
  53. S.I. Alexandros, C.S. Akratos, Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency, A.A. Ansari, S.S. Gill, R. Gill, G.R. Lanza, L. Newman, Eds., Phytoremediation, Springer, Berlin, Germany, 2016, pp. 327–346.
  54. U. Stottmeister, A. Wießner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R.A. Müller, H. Moormann, Effects of plants and microorganisms in constructed wetlands for wastewater treatment, Biotechnol. Adv., 22 (2003) 93–117.
  55. F.F. Avelar, A.T. de Matos, M.P. de Matos, A.C. Borges, Coliform bacteria removal from sewage in constructed wetlands planted with Mentha aquatica, Environ. Technol., 35 (2014) 2095–2103.
  56. D. Singh, A. Tiwari, R. Gupta, Phytoremediation of lead from wastewater using aquatic plants, J. Agric. Sci. Technol., 8 (2012) 1–11.