References

  1. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, Water Res., 43 (2009) 363–380.
  2. A. Saravanan, P. Senthil Kumar, D.-V.N. Vo, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, B. Gayathri,
    V. Dhivya Bharathi, Photocatalysis for removal of environmental pollutants and fuel production: a review, Environ. Chem. Lett., 19 (2021) 441–463.
  3. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  4. B. Lazarus, D.L. Paterson, J.L. Mollinger, B.A. Rogers, Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from foodproducing animals? A systematic review, Clin. Infect. Dis., 60 (2015) 439–452.
  5. M. Shokri, A. Jodat, N. Modirshahla, M.A. Behnajady, Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles, Environ. Technol., 34 (2013) 1161–1166.
  6. S.Q. Xia, Z.L. Gu, Z.Q. Zhang, J. Zhang, S.W. Hermanowicz, Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles, Chem. Eng. J., 257 (2014) 98–104.
  7. B. Yao, Y.Z. Liu, D.L. Zou, Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles, Chemosphere, 226 (2019) 298–306.
  8. D.M. Chen, J.M. Delmas, D. Hurtaud-Pessel, E. Verdon, Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry, Food Chem., 311 (2020) 125924, doi: 10.1016/j.foodchem.2019.125924.
  9. Q. Sui, J. Huang, S.B. Deng, G. Yu, Q. Fan, Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China, Water Res., 44 (2010) 417–426.
  10. M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes, A.N. Shocron, K.M. Conforti, J.P. de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. Gede Wenten, J.G. Santiago, T. Alan Hatton, M.Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122 (2022) 13547–13635.
  11. M. Dolatabadi, M.T. Ghaneian, C. Wang, S. Ahmadzadeh, Electro-Fenton approach for highly efficient degradation of the herbicide 2,4-dichlorophenoxyacetic acid from agricultural wastewater: process optimization, kinetic and mechanism, J. Mol. Liq., 334 (2021) 116116, doi: 10.1016/j.molliq.2021.116116.
  12. M. Dolatabadi, T. Świergosz, S. Ahmadzadeh, Electro-Fenton approach in oxidative degradation of dimethyl phthalate - the treatment of aqueous leachate from landfills, Sci. Total Environ., 772 (2021) 145323, doi: 10.1016/j.scitotenv.2021.145323.
  13. A. Pirkarami, M.E. Olya, S. Tabibian, Treatment of colored and real industrial effluents through electrocoagulation using solar energy, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1243–1252.
  14. A. Bakshi, A.K. Verma, A.K. Dash, Electrocoagulation for removal of phosphate from aqueous solution: statistical modeling and techno-economic study, J. Cleaner Prod., 246 (2020) 118988, doi: 10.1016/j.jclepro.2019.118988.
  15. S. Oladzad, N. Fallah, B. Nasernejad, Combination of novel coalescing oil water separator and electrocoagulation technique for treatment of petroleum compound contaminated groundwater, Water Sci. Technol., 76 (2017) 57–67.
  16. B. Merzouk, B. Gourich, A. Sekki, K. Madani, M. Chibane, Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: a case study, J. Hazard. Mater., 164 (2009) 215–222.
  17. B. Merzouk, M. Yakoubi, I. Zongo, J.-P. Leclerc, G. Paternotte, S. Pontvianne, F. Lapicque, Effect of modification of textile wastewater composition on electrocoagulation efficiency, Desalination, 275 (2011) 181–186.
  18. M. Ji, X.G. Jiang, F. Wang, A mechanistic approach and response surface optimization of the removal of oil and grease from restaurant wastewater by electrocoagulation and electroflotation, Desal. Water Treat., 55 (2015) 2044–2052.
  19. J. Heffron, M. Marhefke, B.K. Mayer, Removal of trace metal contaminants from potable water by electrocoagulation, Sci. Rep., 6 (2016) 28478, doi: 10.1038/srep28478.
  20. M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, M.S. Oncel, Treatment of potable water containing low concentration of arsenic with electrocoagulation: different connection modes and Fe–Al electrodes, Sep. Purif. Technol., 77 (2011) 283–293.
  21. C.Y. Hu, S.L. Lo, W.H. Kuan, Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes, Water Res., 37 (2003) 4513–4523.
  22. S. Badakhshan, S. Ahmadzadeh, A. Mohseni-Bandpei, M. Aghasi, A. Basiri, Potentiometric sensor for iron(III) quantitative determination: experimental and computational approaches, BMC Chem., 13 (2019) 131, doi: 10.1186/s13065-019-0648-x.
  23. K.L. Dubrawski, M. Mohseni, In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal, Water Res., 47 (2013) 5371–5380.
  24. M. Murata, T.A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, Y. Einaga, Electrochemical detection of free chlorine at highly boron-doped diamond electrodes, J. Electroanal. Chem., 612 (2008) 29–36.
  25. H. Park, C.D. Vecitis, M.R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species, J. Phys. Chem. C, 113 (2009) 7935–7945.
  26. M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes, A.N. Shocron, K.M. Conforti, J. Pedro de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. Gede Wenten, J.G. Santiago, T. Alan Hatton, M.Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122 (2022) 13547–13635.
  27. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  28. K.-W. Pi, Q. Xiao, H.-Q. Zhang, M. Xia, A.R. Gerson, Decolorization of synthetic methyl orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM, Process Saf. Environ. Prot., 92 (2014) 796–806.
  29. Z. Moghiseh, A. Rezaee, Removal of aspirin from aqueous solution using electroactive bacteria induced by alternating current, Environ. Sci. Pollut. Res. Int., 28 (2021) 25327–25338.
  30. E. Hoseinzadeh, C. Wei, M. Farzadkia, A. Rezaee, Effects of low frequency-low voltage alternating electric current on apoptosis progression in bioelectrical reactor biofilm, Front. Bioeng. Biotechnol., 8 (2020) 2, doi: 10.3389/fbioe.2020.00002
  31. S. Dehghani, A. Rezaee, S. Hosseinkhani, Biostimulation of heterotrophic-autotrophic denitrification in a microbial electrochemical system using alternating electrical current, J. Cleaner Prod., 200 (2018) 1100–1110.
  32. N. Adhoum, L. Monser, N. Bellakhal, J.-E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation, J. Hazard. Mater., 112 (2004) 207–213.
  33. A. Amiri, M.R. Sabour, Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment, Waste Manage., 34 (2014) 2528–2536.
  34. S. Vasudevan, S.M. Sheela, J. Lakshmi, G. Sozhan, Optimization of the process parameters for the removal of boron from drinking water by electrocoagulation—a clean technology, J. Chem. Technol. Biotechnol., 85 (2010) 926–933.
  35. M. Malakootian, M. Ahmadian, Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes, Appl. Water Sci., 9 (2019) 140, doi: 10.1007/ s13201-019-1024-7.
  36. M. Alizadeh, E. Ghahramani, M. Zarrabi, S. Hashemi, Efficient de-colorization of methylene blue by electro-coagulation method: comparison of iron and aluminum electrode, Iran. J. Chem. Chem. Eng., 34 (2015) 39–47.
  37. N. Daneshvar, H. Ashassi Sorkhabi, M.B. Kasiri, Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections, J. Hazard. Mater., 112 (2004) 55–62.
  38. R. Zhou, F. Liu, X. Du, C. Zhang, C. Yang, N.-A. Offiong, Y. Bi, W. Zeng, H. Ren, Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte: the role of reactive chlorine species and process optimization, Sep. Purif. Technol., 290 (2022) 120799, doi: 10.1016/j.seppur.2022.120799.
  39. H. Ren, Y. Bi, F. Liu, C. Zhang, N. Wei, L. Fan, R. Zhou, Removal of ofloxacin from wastewater by chloride electrolyte electrooxidation: analysis of the role of active chlorine and operating costs, Sci. Total Environ., 850 (2022) 157963, doi: 10.1016/j.scitotenv.2022.157963.
  40. M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  41. X.H. Xu, X.F. Zhu, Treatment of refectory oily wastewater by electro-coagulation process, Chemosphere, 56 (2004) 889–894.
  42. W.-L. Chou, C.-T. Wang, W.-C. Chang, S.-Y. Chang, Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation, J. Hazard. Mater., 180 (2010) 217–224.
  43. E. Keshmirizadeh, S. Yousefi, M.K. Rofouei, An investigation on the new operational parameter effective in Cr(VI) removal efficiency: a study on electrocoagulation by alternating pulse current, J. Hazard. Mater., 190 (2011) 119–124.
  44. T. Xu, Y.H. Zhou, X.P. Lei, B. Hu, H. Chen, G. Yu, Study on highly efficient Cr(VI) removal from wastewater by sinusoidal alternating current coagulation, J. Environ. Manage., 249 (2019) 109322, doi: 10.1016/j.jenvman.2019.109322.
  45. T.-H. Chen, K.-H. Yeh, C.F. Lin, M.S. Lee, C.-H. Hou, Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: from tap water purification to wastewater reclamation for water sustainability, Resour. Conserv. Recycl., 177 (2022) 106012, doi: 10.1016/j.resconrec.2021.106012.
  46. Z.-H. Yang, H.-Y. Xu, G.-M. Zeng, Y.-L. Luo, X. Yang, J. Huang, L.-K. Wang, P.-P. Song, The behavior of dissolution/ passivation and the transformation of passive films during electrocoagulation: influences of initial pH, Cr(VI) concentration, and alternating pulsed current, Electrochim. Acta, 153 (2015) 149–158.
  47. J.A.G. Gomes, P. Daida, M. Kesmez, M. Weir, H. Moreno, J.R. Parga, G. Irwin, H. McWhinney, T. Grady, E. Peterson, D.L. Cocke, Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products, J. Hazard. Mater., 139 (2007) 220–231.
  48. S. Goldberg, C.T. Johnston, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling, J. Colloid Interface Sci., 234 (2001) 204–216.
  49. H.D. Ruan, R.L. Frost, J.T. Kloprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim. Acta, Part A, 58 (2002) 967–981.
  50. S.Y. Guvenc, E. Can-Güven, G. Varank, Persulfate enhanced electrocoagulation of paint production industry wastewater: process optimization, energy consumption, and sludge analysis, Process Saf. Environ. Prot., 157 (2022) 68–80.
  51. N. Biglarijoo, S.A. Mirbagheri, M. Ehteshami, S.M. Ghaznavi, Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment, Process Saf. Environ. Prot., 104 (2016) 150–160.
  52. N. Biglarijoo, S.A. Mirbagheri, M. Bagheri, M. Ehteshami, Assessment of effective parameters in landfill leachate treatment and optimization of the process using neural network, genetic algorithm and response surface methodology, Process Saf. Environ. Prot., 106 (2017) 89–103.