References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  2. I.A. Alaton, I.A. Balcioglu, D.W. Bahnemann, Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes, Water Res., 36 (2002) 1143–1154.
  3. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  4. C. Sahoo, A. Gupta, A. Pal, Photocatalytic degradation of Crystal Violet (CI Basic Violet 3) on silver ion doped TiO2, Dyes Pigm., 66 (2005) 189–196.
  5. M. Mansour, I. Benyamina, B. Benalioua, A. Bentouami, B. Boury, H. Hentit, P.-E. Lippens, Combined effect between PVP and glass wool for improvement of the photocatalytic activity under visible light of bismuth(III) oxyhalide and access to α-Bi2O3-BiOI-BiOBr, Appl. Surf. Sci., 534 (2020) 147577, doi: 10.1016/j.apsusc.2020.147577.
  6. I. Benyamina, K. Manseri, M. Mansour, B. Benalioua, A. Bentouami, B. Boury, New Bi2O3-ZnO composite deposited on glass wool. Effect of the synthesis method on photocatalytic efficiency under visible light, Appl. Surf. Sci., 483 (2019) 859–869.
  7. K. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation, J. Ind. Eng. Chem., 34 (2016) 146–156.
  8. X. Wang, Y. Zhang, C. Zhou, D. Huo, R. Zhang, L. Wang, Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance, Appl. Catal., B, 268 (2020) 118390, doi: 10.1016/j.apcatb.2019.118390.
  9. D. Sun, J. Li, L. He, B. Zhao, T. Wang, R. Li, S. Yin, Z. Feng, T. Sato, Facile solvothermal synthesis of BiOCl-TiO2 heterostructures with enhanced photocatalytic activity, CrystEngComm, 16 (2014) 7564–7574.
  10. P. Zhang, H. Liu, H. Liang, J. Bai, C. Li, Enhanced charge separation of α-Bi2O3-BiOI hollow nanotube for photodegradation antibiotic under visible light, Chem. Res. Chin. Univ., 36 (2020) 1227–1233.
  11. Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities, Catal. Commun., 12 (2011) 660–664.
  12. L. Sun, L. Xiang, X. Zhao, C.-J. Jia, J. Yang, Z. Jin, X. Cheng, W. Fan, Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination, ACS Catal., 5 (2015) 3540–3551.
  13. J.-C. Wang, H.-C. Yao, Z.-Y. Fan, L. Zhang, J.-S. Wang, S.-Q. Zang, Z.-J. Li, Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation, ACS Appl. Mater. Interfaces, 8 (2016) 3765–3775.
  14. Q. Yan, X. Xie, Y. Liu, S. Wang, M. Zhang, Y. Chen, Y. Si, Constructing a new Z-scheme multi-heterojunction photocataslyts Ag-AgI/BiOI-Bi2O3 with enhanced photocatalytic activity, J. Hazard. Mater., 371 (2019) 304–315.
  15. M.A. Kumar, B. Mahendra, H. Nagaswarupa, B. Surendra, C. Ravikumar, K. Shetty, Photocatalytic studies of MgO nano powder; synthesized by green mediated route, Mater. Today:. Proc., 5 (2018) 22221–22228.
  16. G. Balakrishnan, R. Velavan, K. Mujasam Batoo, E.H. Raslan, Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results Phys., 16 (2020) 103013, doi: 10.1016/j. rinp.2020.103013.
  17. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance, J. Photochem. Photobiol., B, 190 (2019) 8–20.
  18. N. Salehifar, Z. Zarghami, M. Ramezani, A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation, Mater. Lett., 167 (2016) 226–229.
  19. R. Sathyamoorthy, K. Mageshwari, S.S. Mali, S. Priyadharshini, P.S. Patil, Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route, Ceram. Int., 39 (2013) 323–330.
  20. B. Benalioua, M. Mansour, A. Bentouami, B. Boury, E.H. Elandaloussi, The layered double hydroxide route to Bi–Zn co-doped TiO2 with high photocatalytic activity under visible light, J. Hazard. Mater., 288 (2015) 158–167.
  21. F.-t. Li, X.-j. Wang, Y. Zhao, J.-x. Liu, Y.-j. Hao, R.-h. Liu, D.-s. Zhao, Ionic-liquid-assisted synthesis of
    high-visible-light activated N–B–F-tri-doped mesoporous TiO2 via a microwave route, Appl. Catal., B, 144 (2014) 442–453.
  22. L.M. Pastrana-Martínez, S. Morales-Torres, A.G. Kontos, N.G. Moustakas, J.L. Faria, J.M. Doña-Rodríguez, P. Falaras, A.M.T. Silva, TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light, Chem. Eng. J., 224 (2013) 17–23.
  23. J. Han, G. Zhu, M. Hojamberdiev, J. Peng, X. Zhang, Y. Liu, B. Ge, P. Liu, Rapid adsorption and photocatalytic activity for Rhodamine B and Cr(VI) by ultrathin BiOI nanosheets with highly exposed {001} facets, New J. Chem., 39 (2015) 1874–1882.
  24. C. Chang, H.-C. Yang, N. Gao, S.-Y. Lu, Core/shell p-BiOI/n-β-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency, J. Alloys Compd., 738 (2018) 138–144.
  25. Y. Yang, Z. Zeng, C. Zhang, D. Huang, G. Zeng, R. Xiao, C. Lai, C. Zhou, H. Guo, W. Xue, M. Cheng, W. Wang, J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts
    for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight, Chem. Eng. J., 349 (2018) 808–821.
  26. M. Gotić, S. Popović, S. Musić, Influence of synthesis procedure on the morphology of bismuth oxide particles, Mater. Lett., 61 (2007) 709–714.
  27. N. Motakef-Kazemi, M. Yaqoubi, Green synthesis and characterization of bismuth oxide nanoparticle using Mentha pulegium extract, Iran J. Pharm. Res., 19 (2020) 70–79.
  28. M. Ahila, M. Malligavathy, E. Subramanian, D.P. Padiyan, Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization, Solid State Ionics, 298 (2016) 23–34.
  29. A. Sadeghzadeh-Attar, Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures, Sol. Energy Mater. Sol. Cells, 183 (2018) 16–24.
  30. C. Liang, J. Ma, Y. Cao, T. Zhang, C. Yang, Y. Wu, H. Li, H. Xu, Y. Hua, C. Wang, Adsorption of BiOBr microspheres to Rhodamine B and its influence on photocatalytic reaction, Chemosphere, 304 (2022) 135320, doi: 10.1016/j.chemosphere.2022.135320.
  31. T.A. Gadhi, A. Hernández-Gordillo, M. Bizarro, P. Jagdale, A. Tagliaferro, S.E. Rodil, Efficient α/β-Bi2O3 composite for the sequential photodegradation of two-dyes mixture, Ceram. Int., 42 (2016) 13065–13073.
  32. C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning, Scr. Mater., 59 (2008) 332–335.
  33. D. Teng, J. Qu, P. Li, P. Jin, J. Zhang, Y. Zhang, Y. Cao, Heterostructured α-Bi2O3/BiOCl nanosheet for photocatalytic applications, Nanomaterials (Basel), 12 (2022) 3631, doi: 10.3390/nano12203631.
  34. K.K. Bera, M. Chakraborty, M. Mondal, S. Banik, S.K. Bhattacharya, Synthesis of α-β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight, Ceram. Int., 46 (2020) 7667–7680.
  35. K.K. Bera, R. Majumdar, M. Chakraborty, S.K. Bhattacharya, Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight, J. Hazard. Mater., 352 (2018) 182–191.
  36. R. Chen, Z.-R. Shen, H. Wang, H.-J. Zhou, Y.-P. Liu, D.-T. Ding, T.-H. Chen, Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity, J. Alloys Compd., 509 (2011) 2588–2596.
  37. S.-J. Xia, F.-X. Liu, Z.-M. Ni, J.-L. Xue, P.-P. Qian, Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B, J. Colloid Interface Sci., 405 (2013) 195–200.
  38. M. Shao, J. Han, M. Wei, D.G. Evans, X. Duan, The synthesis of hierarchical Zn–Ti layered double hydroxide for efficient visible-light photocatalysis, Chem. Eng. J., 168 (2011) 519–524.
  39. H.F. Lin, R. Ravikrishna, K. Valsaraj, Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1,2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst, Sep. Purif. Technol., 28 (2002) 87–102.
  40. J. Cunningham, G. Al-Sayyed, Factors influencing efficiencies of TiO2-sensitised photodegradation. Part 1. Substituted benzoic acids: discrepancies with dark-adsorption parameters, J. Chem. Soc. Faraday Trans., 86 (1990) 3935–3941.
  41. L. Lin, M. Huang, L. Long, Z. Sun, W. Zheng, D. Chen, Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance, Ceram. Int., 40 (2014) 11493–11501.
  42. J. Li, F. Yang, Q. Zhou, L. Wu, W. Li, R. Ren, Y. Lv, Visiblelight photocatalytic performance, recovery and degradation mechanism of ternary magnetic Fe3O4/BiOBr/BiOI composite, RSC Adv., 9 (2019) 23545–23553.
  43. S. Gao, C. Guo, S. Hou, L. Wan, Q. Wang, J. Lv, Y. Zhang, J. Gao, W. Meng, J. Xu, Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation, J. Hazard. Mater., 331 (2017) 1–12.
  44. P. Jha, K. Singh, Effect of field strength and electronegativity of CaO and MgO on structural and optical properties of SiO2-K2OCaO-MgO glasses, Silicon, 8 (2016) 437–442.
  45. S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation, J. Mater. Sci., 54 (2019) 5726–5742.
  46. A. Behera, D. Kandi, S. Mansingh, S. Martha, K. Parida, Facile synthesis of ZnFe2O4@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H2 energy production, J. Colloid Interface Sci., 556 (2019) 667–679.
  47. J. Li, Q. Zhou, F. Yang, L. Wu, W. Li, R. Ren, Y. Lv, Uniform flower-like BiOBr/BiOI prepared by a new method: visible-light photocatalytic degradation, influencing factors and degradation mechanism, New J. Chem., 43 (2019) 14829–14840.
  48. L. Yosefi, M. Haghighi, S. Allahyari, Solvothermal synthesis of flowerlike p-BiOI/n-ZnFe2O4 with enhanced visible light driven nanophotocatalyst used in removal of acid orange 7 from wastewater, Sep. Purif. Technol., 178 (2017) 18–28.
  49. S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, S. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater, Appl. Catal., B, 168 (2015) 448–457.