1. F. Zanetti, G. De Luca, R. Sacchetti, Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes, Bioresour. Technol., 101 (2010) 3768–3771.
  2. K. Xiao, S. Liang, X. Wang, C. Chen, X. Huang, Current state and challenges of full-scale membrane bioreactor applications: a critical review, Bioresour. Technol., 271 (2019) 473–481.
  3. J. Sun, P. Liang, X. Yan, K. Zuo, K. Xiao, J. Xia, Y. Qiu, Q. Wu, S. Wu, X. Huang, M. Qi, X. Wen, Reducing aeration energy consumption in a large-scale membrane bioreactor: process simulation and engineering application, Water Res., 93 (2016) 205–213.
  4. S. Vinardell, S. Astals, M. Peces, M.A. Cardete, I. Fernández, J. Mata-Alvarez, J. Dosta, Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: a 2020 updated review, Renewable Sustainable Energy Rev., 130 (2020) 109936, doi: 10.1016/j.rser.2020.109936.
  5. B.S. Shete, N.P. Shinkar, Comparative study of various treatments for dairy industry wastewater, IOSR J. Eng., 3 (2013) 42–47.
  6. B. Wu, A.G. Fane, Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control, Membranes, 2 (2012) 565–584.
  7. H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao. A critical review of extracellular polymeric subtances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies, J. Membr. Sci., 460 (2014) 110–125.
  8. F. Meng, S. Zhang, Y. Oh, Z. Zhou, H.-S. Shin, S.-R. Chae, Fouling in membrane bioreactors: an updated review, Water Res., 114 (2017) 151–180.
  9. X. Du, Y. Shi, V. Jegatheesan, I.U. Haq, A review on the mechanism, impacts and control methods of membrane fouling in MBR system, Membranes, 10 (2020) 24, doi: 10.3390/membranes10020024.
  10. Best Environmental Technologies, TM Agricultural, 2014.
  11. C. He, C. Yang, S. Yuan, Z. Hu, W. Wang, Effects of sludge retention time on the performance of anaerobic ceramic membrane bioreactor treating high-strength phenol wastewater, Archaea, (2020) 8895321, doi: 10.1155/2020/8895321.
  12. S. Ek, Biological Performance of Palm Oil Mill Effluent (POME) Treatment using An-MBR, Delft University of Technology, Netherlands, 2021.
  13. W.Y. Cheah, P.L. Show, J.C. Juan, J.-S. Chang, T.C. Ling, Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal, Energy Convers. Manage., 174 (2018) 430–438.
  14. S.N.H. Abu Bakar, H. Abu Hasan, A.W. Mohammad, S.R.S. Abdullah, R. Ngteni, K.M.M. Yusof, Performance of a laboratory-scale moving bed biofilm reactor (MBBR) and its microbial diversity in palm oil mill effluent (POME) treatment, Process Saf. Environ. Prot., 142 (2020) 325–335.
  15. J. TANG, Treatment of Synthetic Palm Oil Mill Effluent (POME) Using An-MBR: Biological and Filtration Performance, Delft University of Technology, Netherlands, 2021.
  16. W. Chaipetch, W. Khongnakorn, C. Yirong, J. Boonkan, A. Jaiyu, M.J.B. Heran, Performance of a high rate
    two-stage anaerobic membrane bioreactor (An-MBR) for the treatment of palm oil mill effluent, Bioresources, 17 (2022) 3398–3412.
  17. S.N.B.A. Khadaroo, P. Grassia, D. Gouwanda, P.E. Poh, The impact of thermal pretreatment on various solid–liquid ratios of palm oil mill effluent (POME) for enhanced thermophilic anaerobic digestion performance, J. Cleaner Prod., 261 (2020) 121159, doi: 10.1016/j.jclepro.2020.121159.
  18. M.N. Uddin, M.A. Rahman, J. Taweekun, K. Techato, M. Mofijur, M. Rasul, Enhancement of biogas generation in up-flow sludge blanket (UASB) bioreactor from palm oil mill effluent (POME), Energy Procedia, 160 (2019) 670–676.
  19. F.A.B.M. Lanan, A. Selvarajoo, V. Sethu, S.K. Arumugasamy, Utilisation of natural plant-based fenugreek (Trigonella foenumgraecum) coagulant and okra (Abelmoschus esculentus) flocculant for palm oil mill effluent (POME) treatment, J. Environ. Chem. Eng., 9 (2021) 104667, doi: 10.1016/j.jece.2020.104667.
  20. N.S.A. Moksin, Y.P. Ong, L.-N. Ho, M.G. Tay, Optimization of photocatalytic fuel cells (PFCs) in the treatment of diluted palm oil mill effluent (POME), J. Water Process Eng., 40 (2021) 101880, doi: 10.1016/j.jwpe.2020.101880.
  21. A.M. Som, A. Yahya, Kinetics and performance study of ultrasonic-assisted membrane anaerobic system using Monod Model for palm oil mill effluent (POME) treatment, Cleaner Eng. Technol., 2 (2021) 100075, doi: 10.1016/j.clet.2021.100075.
  22. Y.Y. Tan, M.M. Bello, A.A. Abdul Raman, Towards cleaner production in palm oil industry: advanced treatment of biologically-treated POME using palm kernel shell-based adsorbent, Cleaner Eng. Technol., 2 (2021) 100079, doi: 10.1016/j.clet.2021.100079.
  23. M.P.O.B. (MPOB), Oil Palm & the Environment, 2014.
  24. M. TmAgri, Best Environmental Technologies, 2014.
  25. J. Barnett, D.E. Richardson, K.R. Stack, T.W.J.A.J. Lewis, Addition of trace metals and vitamins for the optimisation of a pulp and paper mill activated sludge wastewater treatment plant, Appita J., 65 (2012) 237–243.
  26. L.-J. Wu, T. Kobayashi, H. Kuramochi, Y.-Y. Li, K.-Q. Xu, Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste, Arabian J. Sci. Eng., 41 (2016) 2417–2427.
  27. M.S. Romero-Güiza, J. Mata-Alvarez, J.M. Chimenos, S. Astals, The effect of magnesium as activator and inhibitor of anaerobic digestion, Waste Manage., 56 (2016) 137–142.
  28. M. Mellyanawaty, F.M.A. Chusna, H. Sudibyo, N. Nurjanah, W. Budhijanto, Influence of nutrient impregnated into zeolite addition on anaerobic digestion of palm oil mill effluent (POME), IOP Conf. Ser.: Mater. Sci. Eng., 316 (2018) 012069, doi: 10.1088/1757-899X/316/1/012069.
  29. Z. Milán, S. Montalvo, N. Ruiz-Tagle, H. Urrutia, R. Chamy, E. Sánchez, R. Borja, Influence of heavy metal supplementation on specific methanogenic activity and microbial communities detected in batch anaerobic digesters, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 45 (2010) 1307–1314.
  30. N. Anwar, W. Wang, J. Zhang, Y. Li, C. Chen, G. Liu, R. Zhang, Effect of sodium salt on anaerobic digestion of kitchen waste, Water Sci. Technol., 73 (2016) 1865–1871.
  31. Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99 (2008) 4044–4064.
  32. X. Song, W. Luo, J. McDonald, S.J. Khan, F.I. Hai, W. Guo, H.H. Ngo, L.D. Nghiem, Effects of sulphur on the performance of an anaerobic membrane bioreactor: biological stability, trace organic contaminant removal, and membrane fouling, Bioresour. Technol., 250 (2018) 171–177.
  33. A. Anukam, A. Mohammadi, M. Naqvi, K. Granström, A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency, Processes, 7 (2019) 504, doi: 10.3390/pr7080504.
  34. F. Delvigne, J.-p. Lecomte, Foam Formation and Control in Bioreactors, M.C. Flickinger, ed., Encyclopedia of Industrial Biotechnology, 2009.
  35. P.K. Gkotsis, A.I. Zouboulis, Biomass characteristics and their effect on membrane bioreactor fouling, Molecules, 24 (2019) 2867, doi: 10.3390/molecules24162867.
  36. J. Liu, Y. Zhao, Y. Fan, H. Yang, Z. Wang, Y. Chen, C.Y. Tang, Dissect the role of particle size through collision-attachment simulations for colloidal fouling of RO/NF membranes, J. Membr. Sci., 638 (2021) 119679, doi: 10.1016/j.memsci.2021.119679.
  37. X. Du, K. Zhang, H. Yang, K. Li, X. Liu, Z. Wang, Q. Zhou, G. Li, H. Liang, The relationship between
    size-segregated particles migration phenomenon and combined membrane fouling in ultrafiltration processes: the significance of shear stress, J. Taiwan Inst. Chem. Eng., 96 (2019) 45–52.
  38. Y.-J. Liu, D.D. Sun, Particles size-associated membrane fouling in microfiltration of denitrifying granules supernatant, Chem. Eng. J., 181–182 (2012) 494–500.
  39. Y. Liu, X. Li, Y. Yang, W. Ye, S. Ji, J. Ren, Z. Zhou, Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water, Desalination, 347 (2014) 191–198.
  40. W. Yu, D. Zhang, N.J.D. Graham, Membrane fouling by extracellular polymeric substances after ozone
    pre-treatment: variation of nano-particles size, Water Res., 120 (2017) 146–155.
  41. C.P.L. Grady, G.T. Daigger, H.C. Lim, Biological Wastewater Treatment, Taylor and Francis Group, 1999,
    p. 1076.
  42. M. Lousada Ferreira, Filterability, Sludge Concentration in Membrane Bioreactors, Delft University of Technology, Netherlands, 2011.
  43. L. Deng, W. Guo, H. Ngo, H. Zhang, J. Wang, J. Li, S. Xia, Y. Wu, Biofouling and control approaches in membrane bioreactors, Bioresour. Technol., 221 (2016) 656–665.
  44. S. Rosenberger, H. Evenblij, S. te Poele, T. Wintgens, C.J.J.o.M.S. Laabs, The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups, J. Membr. Sci., 263 (2005) 113–126.
  45. S. Lübbecke, A. Vogelpohl, W. Dewjanin, Wastewater treatment in a biological high-performance system with high biomass concentration, Water Res., 29 (1995) 793–802.
  46. J. Lee, W.-Y. Ahn, C.-H. Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor, Water Res., 35 (2001) 2435–2445.