References

  1. K. Glińska-Lewczuk, I. Gołaś, J. Koc, A. Gotkowska-Płachta, M. Harnisz, A. Rochwerger, The impact of urban areas on the water quality gradient along a lowland river, Environ. Monit. Assess., 188 (2016) 624, doi: 10.1007/s10661-016-5638-z.
  2. M.A. Mallin, V.L. Johnson, S.H. Ensign, Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream, Environ. Monit. Assess., 159 (2009) 475–491.
  3. S.E. Hobbie, J.C. Finlay, B.D. Janke, D.A. Nidzgorski, D.B. Millet, L.A. Baker, Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution, Proc. Natl. Acad. Sci., 114 (2017) 4177–4182.
  4. J. Pokrývková, L. Jurík, L. Lackóová, K. Halászová, R. Hanzlík, M.E. Banihabib, The urban environment impact of climate change study and proposal of the city micro-environment improvement, Sustainability, 13 (2021) 4096, doi: 10.3390/su13084096.
  5. T. Correia, M. Regato, A. Almeida, T. Santos, L. Amaral, M. de Fátima Nunes Carvalho, Manual treatment of urban wastewater by chemical precipitation for production of hydroponic nutrient solutions, J. Ecol. Eng., 21 (2020) 143–152.
  6. G.S. Toor, M.L. Occhipinti, Y.-Y. Yang, T. Majcherek, D. Haver, L. Oki, Managing urban runoff in residential neighborhoods: nitrogen and phosphorus in lawn irrigation driven runoff, PLoS One, 12 (2017) e0179151, doi: 10.1371/journal. pone.0179151.
  7. Y.-Y. Yang, G.S. Toor, Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments, Water Res., 112 (2017) 176–184.
  8. Y.-Y. Yang, G.S. Toor, Stormwater runoff driven phosphorus transport in an urban residential catchment: implications for protecting water quality in urban watersheds, Sci. Rep., 8 (2018) 11681, doi: 10.1038/s41598-018-29857-x.
  9. E. Eriksson, A. Baun, L. Scholes, A. Ledin, S. Ahlman, M. Revitt, C. Noutsopoulos, P.S. Mikkelsen, Selected stormwater priority pollutants — a European perspective, Sci. Total Environ., 383 (2007) 41–51.
  10. Council Directive of 21 May 1991 Concerning Urban Wastewater Treatment (91/271/EEC). Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from= EN (31.05.2022).
  11. EU, Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions and Re-Naturing Cities, European Commission. Available at https://op.europa.eu/en/publicationdetail/-/ publication/fb117980-d5aa-46df-8edc-af367cddc202 (15.02.2022).
  12. Building Community Resilience With Nature-Based Solutions, A Guide for Local Communities, FEMA June 2021. Available at https://www.fema.gov/sites/default/files/documents/fema_riskmap-nature-based-solutions-guide_2021.pdf (18.02.2022).
  13. J. Vymazal, Constructed wetlands for wastewater treatment, Water, 2 (2010) 530–549.
  14. N. Atanasova, J.A.C. Castellar, R. Pineda-Martos, C.E. Nika, E. Katsou, D. Istenič, B. Pucher, M.B. Andreucci, G. Langergraber, Nature-based solutions and circularity in cities, Circ. Econ. Sustainability, 1 (2021) 319–332.
  15. N. Frantzeskaki, Seven lessons for planning nature-based solutions in cities, Environ. Sci. Policy, 93 (2019) 101–111.
  16. H. Bacelo, A.M.A. Pintor, S.C.R. Santos, R.A.R. Boaventura, C.M.S. Botelho, Performance and prospects of different adsorbents for phosphorus uptake and recovery from water, Chem. Eng. J., 381 (2020) 122566, doi: 10.1016/j.cej.2019.122566.
  17. A. Gizaw, F. Zewge, A. Kumar, A. Mekonnen, M. Tesfaye, A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption, J. Water Supply Res. Technol. AQUA, 70 (2021) 921–947.
  18. A. Bus, A. Karczmarczyka, A. Baryła, Phosphorus reactive materials for permeable reactive barrier filling – lifespan estimations, Desal. Water Treat., 245 (2022) 9–15.
  19. J.X. Lin, L. Wang, Comparison between linear and nonlinear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Front. Environ. Sci. Eng., 3 (2009) 320–324.
  20. Y.S. Ho, D. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  21. A.M. Peers, Elovich adsorption kinetics and the heterogeneous surface, J. Catal., 4 (1965) 499–503.
  22. V. Vadivelan, K. Vasanth Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  23. L. Zhang, J.Y. Liu, L.H. Wan, Q. Zhou, X.Z. Wang, Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber, Water Air Soil Pollut., 223 (2012) 5893–5902.
  24. Y. Xu, T.J. Liu, Y.K. Huang, J.Y. Zhu, R.L. Zhu, Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides, Environ. Sci. Pollut. Res., 27 (2020) 16612–16623.
  25. G.W. Kajjumba, S. Emik, A. Öngen, H. Kurtulus Özcan, S. Aydın, Modelling of Adsorption Kinetic Processes—Errors, Theory and Application, S. Edebali, Ed., Advanced Sorption Process Applications, InTechOpen, 2018, doi: 10.5772/intechopen.80495.
  26. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.
  27. H.J. Wang, A.L. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multi-walled carbon nanotubes to Pb(II), J. Colloid Interface Sci., 316 (2007) 277–283.
  28. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  29. J.-P. Simonin, On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  30. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-firstorder and pseudo-second-order rate laws: a review, Cleaner Eng. Technol., 1 (2020) 100032, doi: 10.1016/j.clet.2020.100032.
  31. A. Bus, A. Karczmarczyk, Supporting constructed wetlands in P removal efficiency from surface water, Water Sci. Technol., 75 (2017) 2554–2561.
  32. L.H. Wang, C. Penn, C.-h. Huang, S. Livingston, J.H. Yan, Using steel slag for dissolved phosphorus removal: insights from a designed flow-through laboratory experimental structure, Water, 12 (2020) 1236, doi: 10.3390/w12051236.
  33. E. Nowobilska-Majewska, P. Bugajski, The impact of selected parameters on the condition of activated sludge in a biologic reactor in the treatment plant in Nowy Targ, Poland, Water, 12 (2020) 2657, doi: 10.3390/w12102657.
  34. A. Karczmarczyk, A. Bus, A. Baryła, Influence of operation time, hydraulic load and drying on phosphate retention capacity of mineral filters treating natural swimming pool water, Ecol. Eng., 130 (2019) 176–183.
  35. A. Bańkowska-Sobczak, Calcite as a candidate for non-invasive phosphorus removal from lakes, Ecohydrol. Hydrobiol., 21 (2021) 683–699.
  36. A. Baryła, A. Karczmarczyk, A. Brandyk, A. Bus, The influence of a green roof drainage layer on retention capacity and leakage quality, Water Sci. Technol., 77 (2018) 2886–2895.
  37. M.E. Dietz, J.C. Clausen, Saturation to improve pollutant retention in a rain garden, Environ. Sci. Technol., 40 (2006) 1335–1340.
  38. M. Eadie, Water Sensitive Urban Design for the Coastal Dry Tropics (Townsville): Design Objectives for Stormwater Management, Townsville City Council, 2011. Available at https://www.townsville.qld.gov.au/__data/assets/pdf_file/ 0007/12220/Design_Objectives_For_Stormwater_Management. pdf (16.02.2022).
  39. C. Berretta, A. Aiello, H.S. Jensen, M.R. Tillotson, A. Boxall, V. Stovin, Influence of Design and Media Amendments on the Performance of Stormwater Biofilters, Proceedings of the Institution of Civil Engineers-Water Management, Thomas Telford Ltd., 2018, pp. 87–98.