References

  1. E. Bazrafshan, F. Kord Mostafapour, M. Farzadkia, K.A. Ownagh, A.H. Mahvi, Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process, PLoS One, 7 (2012) e40108, doi: 10.1371/journal.pone. 0040108.
  2. E. Ahmadi, S. Yousefzadeh, A. Mokammel, M. Miri, M. Ansari, H. Arfaeinia, M.Y. Badi, H.R. Ghaffari, S. Rezaei, A.H. Mahvi, Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge, Renewable Sustainable Energy Rev., 121 (2020) 109674, doi: 10.1016/j.rser.2019.109674.
  3. M. Rezvani Ghalhari, H. Schönberger, B. Askari Lasaki, K. Asghari, E. Ghordouei Milan, N. Rezaei Rahimi, S. Yousefi, B. Vakili, A.H. Mahvi, Performance evaluation and siting index of the stabilization ponds based on environmental parameters: a case study in Iran, J. Environ. Health Sci. Eng., 19 (2021) 1681–1700.
  4. A.H. Mahvi, A. Naghizadeh, A.R. Mesdaghinia, M. Alimohammadi, Application of Membrane Technology in High Quality Effluent Production, The First National Seminar on the Role of Recycled Water and Wastewater in Water Resources Management, CIVILICA, Tehran, Iran, 2008.
  5. A. Kettab, H. Bouanani, Urban Wastewater Treatment Plants. Pharmaceutical Wastewater Treatment Technologies, 2021.
  6. A. Asgari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, M.H. Dehghani, S. Nazmara, K. Yaghmaeian, Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using
    in-vessel composting, J. Environ. Health Sci. Eng., 15 (2017) 3, doi: 10.1186/s40201-017-0267-1.
  7. D. Brockmann, Y. Gérand, C. Park, K. Milferstedt, A. Hélias, J. Hamelin, Wastewater treatment using oxygenic photogranulebased process has lower environmental impact than conventional activated sludge process, Bioresour. Technol., 319 (2021) 124204, doi: 10.1016/j.biortech.2020.124204.
  8. M.F.U.B. Md Hafiz, S.R.B. Mohamed Kutty, S.N.B.S.I. Hakmi, Impact of Treating Ammonia-Nitrogen Contamination from Chemical Fertilizer Plant Using Extended Aeration Activated Sludge System, Proceedings of the International Conference on Civil, Offshore and Environmental Engineering, Springer, New York, NY 10036, USA, 2021, pp. 163–173.
  9. A. Al-Mamun, Biological efficiency and control of a membrane bioreactor and conventional activated sludge process for treating municipal wastewater, J. Agric. Mar. Sci., 26 (2021) 27–36.
  10. M. Nowrouzi, H. Abyar, A. Rostami, Cost coupled removal efficiency analyses of activated sludge technologies to achieve the cost-effective wastewater treatment system in the meat processing units, J. Environ. Manage., 283 (2021) 111991, doi: 10.1016/j.jenvman.2021.111991.
  11. D.J. Sarkar, S.D. Sarkar, B.K. Das, B.K. Sahoo, A. Das, S.K. Nag, R.K. Manna, B.K. Behera, S. Samanta, Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system, Water Res., 192 (2021) 116853, doi: 10.1016/j.watres.2021.116853.
  12. A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Mahmoudi, A. Hashemian, Effect of the retention time and the phenol concentration on the stabilization pond efficiency in the treatment of oil refinery wastewater, Fresenius Environ. Bull., 23 (2014) 2541–2548.
  13. A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi, Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM), Desal. Water Treat., 87 (2017) 199–208.
  14. A. Almasi, A. Dargahi, A. Amrane, M. Fazlzadeh, M. Soltanian, A. Hashemian, Effect of molasses addition as biodegradable material on phenol removal under anaerobic conditions, Environ. Eng. Manage. J., 17 (2018), doi: 10.30638/eemj.2018.146.
  15. K. Sharafi, M. Pirsaheb, T. Khosravi, A. Dargahi, M. Moradi, M.T. Savadpour, Fluctuation of organic substances, solids, protozoan cysts, and parasite egg at different units of a wastewater integrated stabilization pond (full scale treatment plant): a case study, Iran, Desal. Water Treat., 57 (2016) 4913–4919.
  16. M.S. Alves, F.J.A. da Silva, A.L.C. Araújo, E.L. Pereira, Performance evaluation and coefficients of reliability for waste stabilization ponds in northeast Brazil, Rev. Ambient. Água, 16 (2021) 2571,
    doi: 10.4136/ambi-agua.2571.
  17. N. Mburu, S.M. Tebitendwa, J.J.A. van Bruggen, D.P.L. Rousseau, P.N.L. Lens, Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works, J. Environ. Manage., 128 (2013) 220–225.
  18. G.-J. Liu, D. Zheng, L.-W. Deng, Q. Wen, Y. Liu, Comparison of constructed wetland and stabilization pond for the treatment of digested effluent of swine wastewater, Environ. Technol., 35 (2014) 2660–2669.
  19. S. Kataki, S. Chatterjee, M.G. Vairale, S. Sharma, S.K. Dwivedi, D.K. Gupta, Constructed wetland, an ecotechnology for wastewater treatment: a review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology, Renewable Sustainable Energy Rev., 148 (2021) 111261, doi: 10.1016/j.rser.2021.111261.
  20. T. González, J. Puigagut, G. Vidal, Organic matter removal and nitrogen transformation by a constructed wetlandmicrobial fuel cell system with simultaneous bioelectricity generation, Sci. Total Environ., 753 (2021) 142075, doi: 10.1016/j.scitotenv.2020.142075.
  21. W. Zhufang, Z. Zhimiao, C. Mengyu, C. Mengqi, Z. Yinjiang, S. Zonglin, Influence of plant community on the purification of domestic sewage by constructed wetland, Chin. J. Environ. Eng., 15 (2021) 126–135.
  22. Y. Zhang, Z. Ji, Y. Pei, Nutrient removal and microbial community structure in an artificial-natural coupled wetland system, Process Saf. Environ. Prot., 147 (2021) 1160–1170.
  23. R.S. Sutar, B. Lekshmi, D.R. Ranade, Y.J. Parikh, S.R. Asolekar, Towards Enhancement of Water Sovereignty by Implementing the ‘Constructed Wetland for Reuse’ Technology in Gated Community, K.R. Reddy, A.K. Agnihotri, Y. Yukselen-Aksoy, B.K. Dubey, A. Bansal, Eds., Sustainable Environment and Infrastructure, Lecture Notes in Civil Engineering, Vol. 90, Springer, Cham, 2021. Available at https://doi.org/10.1007/978-3-030-51354-2_15
  24. E. Alayu, S. Leta, Post treatment of anaerobically treated brewery effluent using pilot scale horizontal subsurface flow constructed wetland system, Bioresour. Bioprocess, 8 (2021) 1–19,
    doi: 10.1186/s40643-020-00356-0.
  25. T.Y. Chen, C.M. Kao, T.Y. Yeh, H.Y. Chien, A.C. Chao, Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study, Chemosphere, 64 (2006) 497–502.
  26. C.H. Sim, M.K. Yusoff, B. Shutes, S.C. Ho, M. Mansor, Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia, J. Environ. Manage., 88 (2008) 307–317.
  27. S.Ç. Ayaz, Ö. Aktaş, L. Akça, N. Fındık, Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system, J. Environ. Manage., 156 (2015) 115–120.
  28. Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 2005.
  29. H.E. Muga, J.R. Mihelcic, Sustainability of wastewater treatment technologies, J. Environ. Manage., 88 (2008) 437–447.
  30. N. Kretschmer, L. Ribbe, H. Gaese, Wastewater reuse for agriculture, Technol. Resour. Manag. Dev. Sci. Contrib. Sus. Dev., 2 (2002) 37–64.
  31. USEPA, Process Design Manual: Land Treatment of Municipal Wastewater Effluents, U.S. Environmental Protection Agency Cincinnati, OH, USA, 2006.
  32. R. Gilbert, C.P. Gerba, R. Rice, H. Bouwer, C. Wallis, J. Melnick, Virus and bacteria removal from wastewater by land treatment, Appl. Environ. Microbiol., 32 (1976) 333–338.
  33. L.E. Leach, C.G. Enfield, C.C. Harlin, Summary of Long-Term Rapid Infiltration System Studies, Environmental Protection Agency, Office of Research and Development, Robert S. Kerr Environmental Research Laboratory, 1980.
  34. G. Pettygrove, T. Asano, Irrigation With Reclaimed Municipal Wastewater. A Guidance Manual, California State Water Res, Control Board. Davis, California, 1984.
  35. S.A. Hannah, B.M. Austern, A.E. Eralp, R.H. Wise, Comparative removal of toxic pollutants by six wastewater treatment processes, J. Water Pollut. Control Fed., 58 (1986) 27–34.
  36. R. Otis, J. Kreissl, R. Frederick, R. Goo, P. Casey, B. Tonning, Onsite Wastewater Treatment Systems Manual (EPA/625/R-00/008), U.S. Environmental Protection Agency, Washington, DC, USA, 2002.
  37. E. Vaiopoulou, P. Melidis, A. Aivasidis, An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus, Desalination, 211 (2007) 192–199.
  38. R. Crites, S. Reed, R.Bastin, Land Treatment Systems for Municipal and Industrial Wastes, McGraw Hill Professional, New York, NY 10019, USA, 2000.
  39. J. Vymazal, Constructed wetlands for wastewater treatment: five decades of experience, Environ. Sci. Technol., 45 (2011) 61–69.
  40. M. Christensson, Enhanced Biological Phosphorus Removal: Carbon Sources, Nitrate as Electron Acceptor and Characterisation of the Sludge Community. Nitrogen Removal, Ph.D. Thesis, Lund University, Sweden, 1997.
  41. A. Rahmani Sani, N. Mehrdadi, A.A. Azimi, A. Torabian, Performance of the subsurface flow wetland in batch flow for municipal wastewater treatment, J. Water Wastewater, Ab va Fazilab, 20 (2009) 32–40 (in Persian).
  42. G. Merlin, J.-L. Pajean, T. Lissolo, Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area, Hydrobiologia, 469 (2002) 87–98.
  43. A. Barco, M. Borin, Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment, Ecol. Eng., 107 (2017) 160–171.
  44. F. Masi, S. Caffaz, A. Ghrabi, Multi-stage constructed wetland systems for municipal wastewater treatment, Water Sci. Technol., 67 (2013) 1590–1598.
  45. S. Elfanssi, N. Ouazzani, L. Latrach, A. Hejjaj, L. Mandi, Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area, Int. J. Phytorem., 20 (2018) 75–87.
  46. Wastewater Effluent Standard, Article 5 of the Regulation on Prevention of Water Pollution, Department of Environment Islamic Republic of Iran, Tehran, Iran, 2005.
  47. B. Beran, F. Kargi, A dynamic mathematical model for wastewater stabilization ponds, Ecol. Modell., 181 (2005) 39–57.
  48. G. Tchobanoglous, F.L. Burton, Wastewater Engineering: Treatment, Disposal Reuse, Metcalf & Eddy Inc., McGraw-Hill, New York, 1991.
  49. F.D. Moreira, E.H.O. Dias, Constructed wetlands applied in rural sanitation: a review, Environ. Res., 190 (2020) 110016, doi: 10.1016/j.envres.2020.110016.